转自:http://blog.csdn.net/linhuanmars/article/details/20024907
这道题属于数值处理的题目,对于整数处理的问题,在Reverse Integer中我有提到过,比较重要的注意点在于符号和处理越界的问题。对于这道题目,因为不能用乘除法和取余运算,我们只能使用位运算和加减法。比较直接的方法是用被除数一直减去除数,直到为0。这种方法的迭代次数是结果的大小,即比如结果为n,算法复杂度是O(n)。
那么有没有办法优化呢? 这个我们就得使用位运算。我们知道任何一个整数可以表示成以2的幂为底的一组基的线性组合,即num=a_0*2^0+a_1*2^1+a_2*2^2+...+a_n*2^n。基于以上这个公式以及左移一位相当于乘以2,我们先让除数左移直到大于被除数之前得到一个最大的基。然后接下来我们每次尝试减去这个基,如果可以则结果增加加2^k,然后基继续右移迭代,直到基为0为止。因为这个方法的迭代次数是按2的幂直到超过结果,所以时间复杂度为O(logn)
class Solution {
public:
int divide(int dividend, int divisor) {
int result = 0;
bool isNeg = ((dividend ^ divisor) >> 31) ? true : false;
if(divisor == 0) {
return INT_MAX;
}
if(dividend == INT_MIN) {
if(divisor == -1) {
return INT_MAX;
}
if(divisor == INT_MIN) {
return 1;
}
dividend += abs(divisor);
result++;
}
if(divisor == INT_MIN) {
return 0;
}
dividend = abs(dividend);
divisor = abs(divisor);
int digits = 0;
while(divisor <= (dividend >> 1)) {
digits++;
divisor <<= 1;
}
while(digits >= 0) {
if(dividend >= divisor) {
dividend -= divisor;
result += 1 << digits;
}
divisor >>= 1;
digits--;
}
return isNeg ? -result : result;
}
};