用Python构建房价预测模型的实际案例

下面是一个详细的机器学习项目示例,创建一个使用机器学习进行房价预测的项目。我们将使用Python及其相关库来实现线性回归模型。

项目名称:房价预测

1. 项目背景

房价预测是机器学习应用中的一个重要领域,通过历史数据来预测房产的市场价值。本项目将使用波士顿房价数据集,通过线性回归模型预测房屋的价格。

2. 项目目标

  • 加载和预处理波士顿房价数据集。
  • 训练一个线性回归模型以预测房价。
  • 评估模型的性能。
  • 可视化结果。

3. 技术栈

  • 编程语言Python
  • NumPyPandasScikit-LearnMatplotlibSeaborn

4. 项目结构

 

├──  .py  # 房价预测实现代码

├── requirements.txt            # 依赖库列表

└── README.md                   # 项目说明文件

5. 安装依赖库

创建一个requirements.txt文件,列出项目所需的库:

 

pandas

scikit-learn

matplotlib

seaborn

然后在终端中使用以下命令安装依赖库:

 

6. 实现房价预测代码 house_price_prediction.py中编写代码:

 diction.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from 

    from sklearn.datasets import load_boston

    boston = load_boston()

    return pd.DataFrame(boston.data, columns=boston.feature_names), boston.target

# 数据预处理

def preprocess_data(X, y):

    # 划分训练集和测试集

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

   

    # 标准化数据

    scaler = StandardScaler()

    X_train = scaler.fit_transform(X_train)

    X_test = scaler.transform(X_test)

   

    return X_train, X_test, y_train, y_test

# 训练线性回归模型

def train_model(X_train, y_train):

    model = LinearRegression()

    model.fit(X_train, y_train)

    

    mse = mean_squared_error(y_test, y_pred)

    r2 = r2_score(y_test, y_pred)

   

    print(f'Mean Squared Error: {mse:.2f}')

    print(f'R^2 Score: {r2:.2f}')

   

    return y_pred

# 可视化结果

def plot_results(y_test, y_pred):

    plt.figure(figsize=(10, 6))

    sns.scatterplot(x=y_test, y=y_pred)

    plt.xlabel('True Prices')

    plt.ylabel('Predicted Prices')

    plt.title('True Prices vs Predicted Prices')

    plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linestyle='--')

    plt.show()

# 主函数

if __name__ == "__main__":

    # 加载数据

 ocess_data(X, y)

    # 训练模型

    model = train_model(X_train, y_train)

    # 评估模型

    y_pred = evaluate_model(model, X_test, y_test)

    # 可视化结果

    plot_results(y_test, y_pred)

7. 功能解释

  • 数据加载
    • load_data函数使用sklearn中的波士顿房价数据集,返回特征数据和目标价格。
  • 数据预处理
    • preprocess_data函数将数据划分为训练集和测试集,并对数据进行标准化。
  • 训练模型
    • train_model函数使用线性回归算法训练模型。
  • 评估模型性能
    • evaluate_model函数使用均方误差(MSE)和分数评估模型的性能,并打印结果。
  • 可视化结果
    • plot_results函数可视化真实房价与预测房价之间的关系。

8. 运行项目

在终端中运行以下命令以启动项目:

bash复制代码

python house_price_prediction.py

9. 项目扩展

  • 尝试使用其他机器学习算法(如决策树、随机森林)进行房价预测,并比较模型性能。
  • 探索特征选择和工程,尝试添加或删除特征以优化模型。
  • 研究模型的过拟合与欠拟合,调整模型参数。

更多详细内容请访问

用Python构建房价预测模型的实际案例资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89826543

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值