下面是一个详细的项目实例,展示如何使用MATLAB实现通过麻雀算法优化的卷积神经网络(CNN)进行多输入单输出的回归预测。我们将使用一个简单的合成数据集来演示如何构建、训练和评估模型。
一、项目概述
目标:实现SSA-CNN方法,优化卷积神经网络,进行多输入单输出的回归预测。
二、数据准备
首先,生成一个示例数据集。
_timesteps, num_features); % 1000个样本,每个样本10个时间步,每个时间步5个特征
% 目标输出是特征的加权和加上一些噪声
true_coefficients = [1.5, -2.0, 0.5, 0.3, 2.5]; % 权重
Y = zeros(num_samples, 1);
for i = 1:num_samples
Y(i) = sum(X(i, :, :) .* reshape(true_coefficients, 1, 1, []), 'all') + randn * 0.1; % 添加噪声
end
% 划分训练集和测试集
train_ratio = 0.8; % 训练集比例
train_size = floor(nu
Y_train = Y(1:train_size);
X_test = X(train_size + 1:end, :, :);
Y_test = Y(train_size + 1:end);
三、卷积神经网络模型构建
构建卷积神经网络模型的函数。
matla
maxPooling2dLayer(2, 'Stride', 2) % 最大池化层
convolution2dLayer([3 3], 32, 'Padding', 'same') % 第二个卷积层
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2) % 第二个池化层
flattenLayer
fullyConnectedLayer(1) % 全连接层
regressionLayer]; % 回归层
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
' -epoch', ...
'Verbose', false, ...
'Plots', 'training-progress');
model = layerGraph(layers);
end
四、麻雀算法实现
实现麻雀算法来优化CNN模型的超参数。
function [be
num_sparrows = 20; % 麻雀数量
num_iterations = 50; % 迭代次数
lb = [1e-5, 50]; % 学习率和最大epoch的下限
ub = [1e-2, 200]; % 学习率和最大epoch的上限
% 初始化麻雀群
positions = lb + (ub - lb) .* rand(num_sparrows, 2); % 随机初始化
best_mse = inf;
for iter = 1:num_iterations
for i = 1:num_sparrows
% 获取当 前麻雀的位置
learning_rate = positions(i, 1);
num_epochs = round(positions(i, 2)); % 最大epoch
% 创建并训练CNN模型
model = create_cnn_model();
options = trainingOptions('adam', ...
'MaxEpochs', num_epochs, ...
'InitialLearnRate', learning_rate, ...
'V道德风尚erbose', false);
model = trainNetwork(X_train, Y_train, model, options);
% 预测并计算MSE
Y_pred = predict(model, X_train);
mse = mean((Y_train - Y_pred).^2); % 均方误差
% 更新适应度
if mse < best_mse
rgfdgsg best_mse = mse;
best_learning_rate = learning_rate;
best_num_epochs = num_epochs;
end
end
% 更新麻雀位置
for i = 1:num_sparrows
r = rdsfdsaand(1, 2);
positions(i, :) = positions(i, :) + (best_mse - positions(i, :)) .* r;
% 位置限制
positions(dsfsdfi, :) = min(max(positions(i, :), lb), ub);
end
end
end
五、模型训练与评估
使用优化后的CNN模型进行训练和评估。
% 输出最佳参数
ochs);
fprintf('最佳适应度 (MSE): %.4f\n', best_mse);
% 创建最终模型
final_model = create_cnn_model();
options = trainingOptions('adam', ...
'MaxEpochs', best_num_epochs, ...
'InitialLearnRate', best_learning_rate, ...
dfsf;
% 计算评估指标
MAE = mean(abs(Y_test - Y_pred));
MBE = mean(Y_pred - Y_test);
R2 = 1 - sum((Y_test - Y_pred).^2) / sum((Y_test - mean(Y_test)).^2);
% 输出评估结果
fprind('测试集MAE: %.4f\n', MAE);
fprintf('测试集MBE: %.4f\n', MBE);
fprintf('测试集R²: %.
, R2);
六、总结
在这个示例中,我们使用麻雀算法优化了卷积神经网络(CNN)模型,并对多输入单输出的数据进行回归预测。通过计算MAE、MBE和R²等指标,我们可以验证SSA-CNN模型在回归预测中的有效性。您可以根据需要调整数据集、模型参数和SSA参数,以优化模型性能。
七、数据示例
上面的代码中已经生成了合成数据,您可以直接使用这些代码进行测试。为了更好地理解和实现,确保您在MATLAB中安装了深度学习工具箱(Deep Learning Toolbox)。
更多详细内容请访问
使用MATLAB实现通过麻雀算法优化的卷积神经网络(CNN)进行多输入单输出的回归预测实例(包含详细的完整的程序和数据)资源-CSDN文库 https://download.csdn.net/download/xiaoxingkongyuxi/89834332