使用MATLAB实现通过麻雀算法优化的卷积神经网络(CNN)进行多输入单输出的回归预测实例

下面是一个详细的项目实例,展示如何使用MATLAB实现通过麻雀算法优化的卷积神经网络(CNN)进行多输入单输出的回归预测。我们将使用一个简单的合成数据集来演示如何构建、训练和评估模型。

一、项目概述

目标:实现SSA-CNN方法,优化卷积神经网络,进行多输入单输出的回归预测。

二、数据准备

首先,生成一个示例数据集。

 _timesteps, num_features); % 1000个样本,每个样本10个时间步,每个时间步5个特征

% 目标输出是特征的加权和加上一些噪声

true_coefficients = [1.5, -2.0, 0.5, 0.3, 2.5]; % 权重

Y = zeros(num_samples, 1);

for i = 1:num_samples

    Y(i) = sum(X(i, :, :) .* reshape(true_coefficients, 1, 1, []), 'all') + randn * 0.1; % 添加噪声

end

% 划分训练集和测试集

train_ratio = 0.8; % 训练集比例

train_size = floor(nu 

Y_train = Y(1:train_size);

X_test = X(train_size + 1:end, :, :);

Y_test = Y(train_size + 1:end);

三、卷积神经网络模型构建

构建卷积神经网络模型的函数。

matla 

        maxPooling2dLayer(2, 'Stride', 2) % 最大池化层

        convolution2dLayer([3 3], 32, 'Padding', 'same') % 第二个卷积层

        batchNormalizationLayer

        reluLayer

        maxPooling2dLayer(2, 'Stride', 2) % 第二个池化层

        flattenLayer

        fullyConnectedLayer(1) % 全连接层

        regressionLayer]; % 回归层

   

    options = trainingOptions('adam', ...

        'MaxEpochs', 100, ...

        -epoch', ...

        'Verbose', false, ...

        'Plots', 'training-progress');

   

    model = layerGraph(layers);

end

四、麻雀算法实现

实现麻雀算法来优化CNN模型的超参数。

 

function [be 

    num_sparrows = 20; % 麻雀数量

    num_iterations = 50; % 迭代次数

    lb = [1e-5, 50]; % 学习率和最大epoch的下限

    ub = [1e-2, 200]; % 学习率和最大epoch的上限

   

    % 初始化麻雀群

    positions = lb + (ub - lb) .* rand(num_sparrows, 2); % 随机初始化

    best_mse = inf;

   

    for iter = 1:num_iterations

        for i = 1:num_sparrows

            % 获取当 前麻雀的位置

            learning_rate = positions(i, 1);

            num_epochs = round(positions(i, 2)); % 最大epoch

           

            % 创建并训练CNN模型

            model = create_cnn_model();

            options = trainingOptions('adam', ...

                'MaxEpochs', num_epochs, ...

                'InitialLearnRate', learning_rate, ...

                'V道德风尚erbose', false);

            model = trainNetwork(X_train, Y_train, model, options);

           

            % 预测并计算MSE

            Y_pred = predict(model, X_train);

            mse = mean((Y_train - Y_pred).^2); % 均方误差

           

            % 更新适应度

            if mse < best_mse

              rgfdgsg  best_mse = mse;

                best_learning_rate = learning_rate;

                best_num_epochs = num_epochs;

            end

        end

       

        % 更新麻雀位置

        for i = 1:num_sparrows

            r = rdsfdsaand(1, 2);

            positions(i, :) = positions(i, :) + (best_mse - positions(i, :)) .* r;

           

            % 位置限制

            positions(dsfsdfi, :) = min(max(positions(i, :), lb), ub);

        end

    end

end

五、模型训练与评估

使用优化后的CNN模型进行训练和评估。

 

% 输出最佳参数

 ochs);

fprintf('最佳适应度 (MSE): %.4f\n', best_mse);

% 创建最终模型

final_model = create_cnn_model();

options = trainingOptions('adam', ...

    'MaxEpochs', best_num_epochs, ...

    'InitialLearnRate', best_learning_rate, ...

dfsf;

% 计算评估指标

MAE = mean(abs(Y_test - Y_pred));

MBE = mean(Y_pred - Y_test);

R2 = 1 - sum((Y_test - Y_pred).^2) / sum((Y_test - mean(Y_test)).^2);

% 输出评估结果

fprind('测试集MAE: %.4f\n', MAE);

fprintf('测试集MBE: %.4f\n', MBE);

fprintf('测试集R²: %.

, R2);

六、总结

在这个示例中,我们使用麻雀算法优化了卷积神经网络(CNN)模型,并对多输入单输出的数据进行回归预测。通过计算MAEMBE等指标,我们可以验证SSA-CNN模型在回归预测中的有效性。您可以根据需要调整数据集、模型参数和SSA参数,以优化模型性能。

七、数据示例

上面的代码中已经生成了合成数据,您可以直接使用这些代码进行测试。为了更好地理解和实现,确保您在MATLAB中安装了深度学习工具箱(Deep Learning Toolbox)。

更多详细内容请访问

使用MATLAB实现通过麻雀算法优化的卷积神经网络(CNN)进行多输入单输出的回归预测实例(包含详细的完整的程序和数据)资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89834332

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值