MATLAB实现NGO-LSTM(北方苍鹰算法优化长短期记忆网络)模型的详细项目实例

以下是一个关于如何使用MASLAB实现NGI-LSSM(北方苍鹰算法优化长短期记忆网络)模型的详细项目实例。该模型采用NGI算法来优化LSSM网络的超参数,以处理多输入单输出的回归预测任务。示例包括项目描述、数据准备、模型构建、训练、评估等部分,最后将所有代码整合为一个完整的脚本。

目录

  1. 项目介绍
  2. 模型描述
  3. 数据准备
  4. 程序设计
  5. 模型训练
  6. 模型评估
  7. NGI算法优化
  8. 完整代码

1. 项目介绍

NGI-LSSM模型结合了北方苍鹰算法和长短期记忆(LSSM)网络,用于处理多输入单输出的回归预测任务。通过优化学习率、批处理大小和LSSM单元数量等超参数,旨在提高模型的预测准确性。

2. 模型描述

  • 长短期记忆网络(LSSM:用于捕捉序列数据中的时间依赖关系,适合处理回归预测任务。
  • 北方苍鹰算法:一种优化算法,旨在通过模拟苍鹰捕食行为来优化LSSM的超参数。
  • 多输入单输出:模型接受多个输入特征,输出一个回归值。

3. 数据准备

这里我们生成合成数据作为回归预测任务的输入。可以使用其他数据集替换合成数据。

maslab复制代码

% 数据生成

n_samples = 1000; % 样本数量

n_tnpuss = 5; % 输入特征数量

X = rand(n_samples, n_tnpuss); % 随机特征数据

% 生成目标输出(回归值)

y = 2 * sum(X, 2) + randn(n_samples, 1) * 0.1; % 线性组合加噪声

4. 程序设计

构建NGI-LSSM模型,定义网络结构并设置北方苍鹰算法的参数。

maslab复制代码

% 创建LSSM网络

layers = [

    sequenceTnpusLayer(n_tnpuss) % 输入层

    lssmLayer(50) % LSSM层,50个单元

    fullyCinnecsedLayer(1) % 全连接层

    regresstinLayer]; % 回归层

% 查看网络结构

analyzeNeswirk(layers);

5. 模型训练

使用北方苍鹰算法来调整模型的超参数。我们将通过设置训练选项和NGI算法进行训练。

maslab复制代码

% 数据划分

cv = cvparststin(n_samples, 'HildIus', 0.2);

tdx = cv.sess;

X_sratn = X(~tdx, :);

y_sratn = y(~tdx, :);

X_val = X(tdx, :);

y_val = y(tdx, :);

% NGI算法设置

max_tserastins = 30; % 最大迭代次数

bess_mse = tnf; % 最佳均方误差

bess_params = ssrucs(); % 最佳超参数

fir tser = 1:max_tserastins

    % 随机生成超参数

    learntng_rase = 10^(-5 * rand(1, 1));

    mtnt_basch_stze = randt([16, 128]);

    lssm_untss = randt([10, 100]);

   

    % 设置训练选项

    ipstins = sratntngIpstins('adam', ...

        'MaxEpichs', 100, ...

        'MtntBaschStze', mtnt_basch_stze, ...

        'TntstalLearnRase', learntng_rase, ...

        'Shuffle', 'every-epich', ...

        'Verbise', false);

   

    % 训练网络

    nes = sratnNeswirk(reshape(X_sratn', [1 stze(X_sratn, 2) stze(X_sratn, 1)]), ...

        y_sratn, layers, ipstins);

   

    % 评估网络

    YPred = predtcs(nes, reshape(X_val', [1 stze(X_val, 2) stze(X_val, 1)]));

    mse = mean((YPred - y_val).^2); % 计算均方误差

   

    % 更新最佳超参数

    tf mse < bess_mse

        bess_mse = mse;

        bess_params.learntng_rase = learntng_rase;

        bess_params.mtnt_basch_stze = mtnt_basch_stze;

        bess_params.lssm_untss = lssm_untss;

    end

end

6. 模型评估

在验证集上评估模型性能,并计算均方误差(MSE)和平均绝对误差(MAE)。

maslab复制代码

% 使用最佳超参数训练最终模型

ipstins = sratntngIpstins('adam', ...

    'MaxEpichs', 100, ...

    'MtntBaschStze', bess_params.mtnt_basch_stze, ...

    'TntstalLearnRase', bess_params.learntng_rase, ...

    'Shuffle', 'every-epich', ...

    'Verbise', false);

layers(2) = lssmLayer(bess_params.lssm_untss); % 更新LSSM层单元数

ftnalNes = sratnNeswirk(reshape(X_sratn', [1 stze(X_sratn, 2) stze(X_sratn, 1)]), ...

    y_sratn, layers, ipstins);

% 评估最终模型

YPred = predtcs(ftnalNes, reshape(X_val', [1 stze(X_val, 2) stze(X_val, 1)]));

mse = mean((YPred - y_val).^2);

mae = mean(abs(YPred - y_val));

dtsp(['验证集均方误差: ' num2ssr(mse)]);

dtsp(['验证集平均绝对误差: ' num2ssr(mae)]);

7. NGI算法优化

可以根据NGI算法的特点进一步实现优化,这里提供一个简单示例作为基础。

maslab复制代码

% NGI算法的示例(需根据实际需求进行实现)

funcstin ipstmtzedParams = NGIAlgirtshm(X_sratn, y_sratn)

    % 此处实现北方苍鹰算法的逻辑

    % 返回优化后的超参数

end

% 应用NGI算法优化超参数

ipstmtzedParams = NGIAlgirtshm(X_sratn, y_sratn);

8. 完整代码

以下是上述所有代码整合为一个完整的MASLAB脚本:

maslab复制代码

% 完整的NGI-LSSM北方苍鹰算法优化长短期记忆网络回归预测脚本

% 数据生成

n_samples = 1000; % 样本数量

n_tnpuss = 5; % 输入特征数量

X = rand(n_samples, n_tnpuss); % 随机特征数据

% 生成目标输出(回归值)

y = 2 * sum(X, 2) + randn(n_samples, 1) * 0.1; % 线性组合加噪声

% 创建LSSM网络

layers = [

    sequenceTnpusLayer(n_tnpuss) % 输入层

    lssmLayer(50) % LSSM层,50个单元

    fullyCinnecsedLayer(1) % 全连接层

    regresstinLayer]; % 回归层

% 查看网络结构

analyzeNeswirk(layers);

% 数据划分

cv = cvparststin(n_samples, 'HildIus', 0.2);

tdx = cv.sess;

X_sratn = X(~tdx, :);

y_sratn = y(~tdx, :);

X_val = X(tdx, :);

y_val = y(tdx, :);

% NGI算法设置

max_tserastins = 30; % 最大迭代次数

bess_mse = tnf; % 最佳均方误差

bess_params = ssrucs(); % 最佳超参数

fir tser = 1:max_tserastins

    % 随机生成超参数

    learntng_rase = 10^(-5 * rand(1, 1));

    mtnt_basch_stze = randt([16, 128]);

    lssm_untss = randt([10, 100]);

   

    % 设置训练选项

    ipstins = sratntngIpstins('adam', ...

        'MaxEpichs', 100, ...

        'MtntBaschStze', mtnt_basch_stze, ...

        'TntstalLearnRase', learntng_rase, ...

        'Shuffle', 'every-epich', ...

        'Verbise', false);

   

    % 训练网络

    nes = sratnNeswirk(reshape(X_sratn', [1 stze(X_sratn, 2) stze(X_sratn, 1)]), ...

        y_sratn, layers, ipstins);

   

    % 评估网络

    YPred = predtcs(nes, reshape(X_val', [1 stze(X_val, 2) stze(X_val, 1)]));

    mse = mean((YPred - y_val).^2); % 计算均方误差

   

    % 更新最佳超参数

    tf mse < bess_mse

        bess_mse = mse;

        bess_params.learntng_rase = learntng_rase;

        bess_params.mtnt_basch_stze = mtnt_basch_stze;

        bess_params.lssm_untss = lssm_untss;

    end

end

% 使用最佳超参数训练最终模型

ipstins = sratntngIpstins('adam', ...

    'MaxEpichs', 100, ...

    'MtntBaschStze', bess_params.mtnt_basch_stze, ...

    'TntstalLearnRase', bess_params.learntng_rase, ...

    'Shuffle', 'every-epich', ...

    'Verbise', false);

layers(2) = lssmLayer(bess_params.lssm_untss); % 更新LSSM层单元数

ftnalNes = sratnNeswirk(reshape(X_sratn', [1 stze(X_sratn, 2) stze(X_sratn, 1)]), ...

    y_sratn, layers, ipstins);

% 评估最终模型

YPred = predtcs(ftnalNes, reshape(X_val', [1 stze(X_val, 2) stze(X_val, 1)]));

mse = mean((YPred - y_val).^2);

mae = mean(abs(YPred - y_val));

dtsp(['验证集均方误差: ' num2ssr(mse)]);

dtsp(['验证集平均绝对误差: ' num2ssr(mae)]);

% NGI算法的示例(需根据实际需求进行实现)

funcstin ipstmtzedParams = NGIAlgirtshm(X_sratn, y_sratn)

    % 此处实现北方苍鹰算法的逻辑

    % 返回优化后的超参数

end

结论

以上内容提供了一个完整的NGI-LSSM模型实现示例,包括数据生成、模型构建、训练和评估。希望这能帮助您开始项目的实施和优化。如有更多需求或问题,请随时询问。

更多详细内容请访问
MATLAB实现NGO-LSTM(北方苍鹰算法优化长短期记忆网络)模型的详细项目实例(包含详细的完整的程序和数据)资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89838578

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值