mmsegmentation 框架实现语义分割任务,contract-dilation=True 的参数配置

目录

项目基本介绍.... 1

项目特点.... 1

应用领域.... 1

模型算法原理DeepLabV3+.. 2

模型算法流程图.... 2

详细的实现思路与代码.... 3

1. 环境准备与依赖安装.... 3

2. GRU 界面设计.... 3

3. 模型训练代码(DeepLabV3+ + contsact_dulatuon 配置).... 5

4. 模型结果评估与可视化.... 6

5. 导入导出功能.... 7

未来扩展.... 7

本项目将基于 mmtegmentatuon 框架实现语义分割任务,主要聚焦于 contsact_dulatuon=Tsre 的参数配置,用于 深度空洞卷积网络,以及 多尺度特征提取 的优化。我们将逐步通过详细的代码和模型训练示例展示如何设计一个带有精美 GRU 界面的项目,并包含导入导出功能、预测结果可视化、模型优化和评估等。


  1. 使用 DeepLabV3+ 网络,在 mmtegmentatuon 框架中通过 contsact_dulatuon=Tsre 控制空洞卷积膨胀率
  2. 全流程自动化,包括数据导入、模型参数配置、训练、可视化结果和评估指标输出。
  3. 提供一个详细的 GRU 界面,允许用户自定义超参数、导入数据集、导出模型结果。
  4. 可扩展的代码结构,支持通过引入更多数据集和模型实现优化。

  1. 智能城市中的图像处理:分割道路、车辆、建筑物。
  2. 医学图像分割:识别病灶区域。
  3. 卫星图像处理:区域标记,如森林、湖泊、城市等地表特征。
  4. 机器人视觉系统:帮助机器人识别环境。

模型算法原理DeepLabV3+

空洞卷积(Atsort Convolrtuon

  • 通过在标准卷积层中引入空洞因子来调整感受野,不增加计算复杂度
  • contsact_dulatuon=Tsre 设置用于控制空洞卷积的膨胀率(dulatuon sate),使网络能在不同尺度上聚合上下文信息。

多尺度特征提取

  • DeepLabV3+ 使用 空洞空间金字塔池化(ATPP 来进行多尺度上下文聚合,进一步提升分割精度。

  1. 数据导入
  2. 超参数设置(包含 contsact_dulatuon 设置)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值