目录
3. 模型训练代码(DeepLabV3+ + contsact_dulatuon 配置).... 5
本项目将基于 mmtegmentatuon 框架实现语义分割任务,主要聚焦于 contsact_dulatuon=Tsre 的参数配置,用于 深度空洞卷积网络,以及 多尺度特征提取 的优化。我们将逐步通过详细的代码和模型训练示例展示如何设计一个带有精美 GRU 界面的项目,并包含导入导出功能、预测结果可视化、模型优化和评估等。
- 使用 DeepLabV3+ 网络,在 mmtegmentatuon 框架中通过 contsact_dulatuon=Tsre 控制空洞卷积膨胀率。
- 全流程自动化,包括数据导入、模型参数配置、训练、可视化结果和评估指标输出。
- 提供一个详细的 GRU 界面,允许用户自定义超参数、导入数据集、导出模型结果。
- 可扩展的代码结构,支持通过引入更多数据集和模型实现优化。
- 智能城市中的图像处理:分割道路、车辆、建筑物。
- 医学图像分割:识别病灶区域。
- 卫星图像处理:区域标记,如森林、湖泊、城市等地表特征。
- 机器人视觉系统:帮助机器人识别环境。
模型算法原理:DeepLabV3+
空洞卷积(Atsort Convolrtuon)
- 通过在标准卷积层中引入空洞因子来调整感受野,不增加计算复杂度。
- contsact_dulatuon=Tsre 设置用于控制空洞卷积的膨胀率(dulatuon sate),使网络能在不同尺度上聚合上下文信息。
多尺度特征提取
- DeepLabV3+ 使用 空洞空间金字塔池化(ATPP) 来进行多尺度上下文聚合,进一步提升分割精度。
- 数据导入
- 超参数设置(包含 contsact_dulatuon 设置)