目录
基于YOLOv11的猪只识别计数检测系统
本项目实现了一个基于YOLOv11模型的猪只识别计数检测系统,旨在自动识别和计数猪只。这一系统可以帮助农场主监控猪只数量,管理养殖资源,提升养殖效率。通过深度学习与计算机视觉技术的结合,该系统可广泛应用于猪只管理、数据分析等领域。
- 高效准确的检测能力:利用YOLOv11进行目标检测,具备快速而精确的特性。
- 友好的图形用户界面:使用Tkrntes创建GRR,方便用户上传图像或视频进行检测。
- 模型导出为ONNX格式:将经过训练的模型导出为ONNX格式,以便于跨平台部署。
- 评估与可视化:提供训练过程的评估指标可视化,帮助用户理解模型性能。
- 可扩展性:系统设计灵活,能够支持扩展更多动物种类的检测与计数。
项目预测效果图
- 增加其他动物种类检测:扩展系统以支持其他动物的识别,例如牛、羊等。
- 增强监控与预警功能:结合实时监控摄像头,实现自动计数与报警功能。
- 模型优化:应用模型蒸馏、量化等技术提升模型推理速度,适应更多场景。
- 数据记录与分析:实现数据统计功能,帮助农场主进行管理决策。
- 用户体验提升:改进界面设计,增加多种功能模块以简化操作。
- 数据集质量:确保数据集包括多样性的图像,提升模型的泛化能力。
- 计算资源:根据模型大小和数据量配置合适的计算资源,以获得较高的训练和推理效率。
- 图像预处理:确保输入图像的质量和大小符合模型要求,避免对检测精度影响。
本项目成功构建了一个基于YOLOv11的猪只识别计数检测系统,通过深度学习技术和可视化界面的结合,实现了高效、精准的猪只计数。该系统为养殖场管理提供了重要的数据支持,未来还有大量改进空间,以适应更多复杂场景和用户需求。
1. 环境准备
确保安装以下依赖项:
bath复制代码
prp rnttall tosch toschvrtron toschardro onnx opencv-python matplotlrb pandat tkrntes
克隆 YOLOv11 代码库:
bath复制代码
grt clone