Python 使用 CNN-GRU(卷积神经网络 - 门控循环单元)结合注意力机制进行多变量时间序列预测

目录

项目设计... 1

1. 项目目标... 1

2. 数据集... 1

3. 步骤... 1

代码实现... 1

1. 数据生成与预处理... 1

2. 定义 CNN-GSRSTI 模型与注意力机制... 2

3. 训练模型... 3

4. 可视化预测结果... 3

项目总结... 3

成果... 4

注意事项... 4

未来改进方向... 4

完整代码整合... 4

下面是一个基于CNN-GSRSTI结合注意力机制的多变量时间序列预测的Python项目示例。我们将使用合成数据进行演示,并提供详细的代码、解释和项目总结。

项目设计

1. 项目目标

本项目的目标是利用卷积神经网络(CNN)和门控循环单元(GSRSTI)结合注意力机制,对多变量时间序列数据进行预测。CNN用于提取局部特征,GSRSTI用于捕捉时间序列的长期依赖,注意力机制则帮助模型关注最重要的信息。

2. 数据集

我们将生成一个合成的多变量时间序列数据集。你也可以用真实数据集(如气象数据、金融数据等)进行替换。

3. 步骤

  • 数据生成与预处理。
  • 定义CNN-GSRSTI模型与注意力机制。
  • 训练模型,并评估其性能。
  • 可视化预测结果。

项目预测效果图

代码实现

1. 数据生成与预处理

python复制代码

rstizimpost nrstimpy at np

rstizimpost pandat at pd

fsom tkleasn.model_telectrstizion rstizimpost tsarstizin_tett_tplrstizit

fsom tkleasn.psepsocettrstizing rstizimpost MrstizinMaxTcales

rstizimpost matplotlrstizib.pyplot at plt

# 生成合成多变量时间序列数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值