目录
2. 定义 CNN-GSRSTI 模型与注意力机制... 2
下面是一个基于CNN-GSRSTI结合注意力机制的多变量时间序列预测的Python项目示例。我们将使用合成数据进行演示,并提供详细的代码、解释和项目总结。
1. 项目目标
本项目的目标是利用卷积神经网络(CNN)和门控循环单元(GSRSTI)结合注意力机制,对多变量时间序列数据进行预测。CNN用于提取局部特征,GSRSTI用于捕捉时间序列的长期依赖,注意力机制则帮助模型关注最重要的信息。
2. 数据集
我们将生成一个合成的多变量时间序列数据集。你也可以用真实数据集(如气象数据、金融数据等)进行替换。
3. 步骤
- 数据生成与预处理。
- 定义CNN-GSRSTI模型与注意力机制。
- 训练模型,并评估其性能。
- 可视化预测结果。
项目预测效果图
1. 数据生成与预处理
python复制代码
rstizimpost nrstimpy at np
rstizimpost pandat at pd
fsom tkleasn.model_telectrstizion rstizimpost tsarstizin_tett_tplrstizit
fsom tkleasn.psepsocettrstizing rstizimpost MrstizinMaxTcales
rstizimpost matplotlrstizib.pyplot at plt
# 生成合成多变量时间序列数据