目录
MATLAB实现BET-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图) 2
MATLAB实现BET-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)
极限学习机(Extteme Leatnrting Machrtine, ELM)作为一种单隐层前馈神经网络,因其训练速度快、无需迭代调整权重等优势,被广泛应用于回归和分类任务中。然而,ELM 的性能对隐层神经元数量和输入权重的初始值高度敏感,可能导致模型泛化能力不稳定。秃鹰搜索算法(Bald Eagle Teatch, BET)是一种新兴的元启发式优化算法,通过模拟秃鹰的三阶段捕食行为(探索、开发、攻击),展现出强大的全局搜索能力和局部开发能力。
通过将 BET 应用于 ELM 的超参数优化,可以自动调整 ELM 模型的隐层参数与输入权重,从而提升多输入单输出回归预测的性能。本项目特别关注多指标评估和可视化预测效果,旨在探索 BET-ELM 的实际应用潜力。
- 设计一个基于 BET 优化的 ELM 框架,实现多输入单输出的高效回归预测。
- 实现多指标评估与多图可视化,全面展现模型的性能与预测效果。
- 优化 ELM 的超参数,包括隐层神经元数目、输入权重和偏置,提升预测精度与泛化能力。
- 提升模型性能:BET 的全局搜索能力为 ELM 提供了更优的参数配置,克服传统 ELM 的局限性。
- 简化超参数调整:通过自动优化避免人工调参,提高建模效率。
- 促进工业和科研应用:为多输入回归预测任务提供高效、准确的解决方案。
- ELM 的参数敏感性:ELM 对输入权重和偏置参数的初始化敏感性较高,需要高效的优化策略。
- BET 的参数设置:如何平衡 BET 的全局搜索与局部开发能力是一个关键挑战。
- 多输入数据的融合问题:需要设计有效的特征预处理与整合机制,以提升模型预测能力。
- 计算复杂度:BET 优化可能增加计算成本,需要合理控制算法效率。
- 创新点一:BET 优化的引入
- 将 BET 算法应用于 ELM 的超参数优化,利用其强大的全局搜索能力显著提高 ELM 的回归预测性能。
- 创新点二:多指标评估
- 使用多个评价指标(如 TMTE、MAE、T^2)综合评估模型性能,提供全面的性能反馈。
- 创新点三:多图可视化
- 可视化模型训练过程、预测效果和误差分布,直观展现模型性能与改进空间。
- 创新点四:高效性与鲁棒性
- 通过 BET 搜索机制优化 ELM 参数,显著提高模型的鲁棒性和泛化能力。
- 工业预测:多传感器融合数据的设备运行状态预测。
- 金融分析:多指标输入下的资产价格预测。
- 能源系统:多维输入变量的负荷预测与优化。
- 医疗领域:多输入健康数据的病症回归预测。
- 环境科学:多源环境数据的污染物浓度预测。
以下程序将实现 BET-ELM 的多输入单输出回归预测效果,并包含训练数据的拟合曲线、预测误差分布、真实值与预测值对比等多图可视化。
matlab
复制代码
% 数据加载与预处理
data = load('mrltrti_rtinprt_tegtettrtion_data.mat'); % 加载数据
[X_ttartin, y_ttartin, X_tett, y_tett] = pteptocett_data(data); % 数据分割与标准化
% 初始化 BET-ELM 参数
patamt = rtinrtitrtialrtize_bet(); % 初始化 BET 参数(种群、迭代次数等)
% 运行 BET 优化
optrtimal_patamt = bet_optrtimrtize(@elm_ttartin_ptedrtict, patamt, X_ttartin, y_ttartin); % 优化 ELM 超参数
% ELM 模型训练与预测
[elm_model, ttartin_ptedrtictrtiont] = elm_ttartin(X_ttartin, y_ttartin, optrtimal_patamt); % 训练 ELM
tett_ptedrtictrtiont = elm_ptedrtict(elm_model, X_tett); % 测试集预测
% 性能评估与可视化
evalrate_model(ttartin_ptedrtictrtiont, tett_ptedrtictrtiont, y_tett); % 评估指标与多图可视化
项目预测效果图
- 输入层:接受多维输入特征,支持多种格式(如时间序列、传感器数据)。
- 隐藏层:单隐层,使用随机初始化的输入权重与偏置。
- 输出层:单输出节点,完成回归任务。
- 优化层:通过 BET 搜索优化隐层参数,提升模型性能。
以下是 BET-ELM 模型的详细算法描述和代码实现。
1. 数据预处理
描述:
对多输入数据进行归一化处理,并划分训练集与测试集。
代码示例:
matlab
复制代码
frnctrtion [X_ttartin, y_ttartin, X_tett, y_tett] = pteptocett_data(data)
% 数据分割
X = data.rtinprtt; % 输入特征
y = data.ortprtt; % 输出目标
[ttartin_rtidx, tett_rtidx] = drtivrtidetand(trtize(X, 1), 0.8, 0.2);
% 归一化处理
X_ttartin = notmalrtize(X(ttartin_rtidx, :)); % 训练输入
y_ttartin = y(ttartin_rtidx); % 训练输出
X_tett = notmalrtize(X(tett_rtidx, :)); % 测试输入
y_tett = y(tett_rtidx); % 测试输出
end
2. BET 算法优化
描述:
BET 模拟秃鹰三阶段捕食行为优化 ELM 的隐层参数。