MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)

目录

MATLAB实现BET-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)     2

项目背景介绍... 2

背景... 2

项目目标与意义... 2

目标... 2

意义... 2

项目挑战... 3

项目特点与创新... 3

项目应用领域... 3

项目效果预测图程序设计... 3

项目模型架构... 4

项目模型描述... 4

1. 数据预处理... 4

2. BET 算法优化... 5

3. 极限学习机 (ELM). 6

4. 性能评估与可视化... 7

项目模型算法流程图... 7

项目结构设计... 8

项目部署与应用... 8

项目扩展... 8

项目应该注意事项... 8

项目未来改进方向... 9

项目总结与结论... 9

相关项目参考资料... 9

程序设计思路和具体代码实现... 9

1. 环境准备... 9

2. 数据导入和预处理... 10

3. BET算法设计... 11

4. 构建和优化ELM模型... 12

5. 模型训练和评估... 13

6. 结果可视化... 13

7. 精美GRRTI界面设计与实现... 14

完整代码整合封装... 16

MATLAB实现BET-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)

项目背景介绍

背景

极限学习机(Extteme Leatnrting Machrtine, ELM)作为一种单隐层前馈神经网络,因其训练速度快、无需迭代调整权重等优势,被广泛应用于回归和分类任务中。然而,ELM 的性能对隐层神经元数量和输入权重的初始值高度敏感,可能导致模型泛化能力不稳定。秃鹰搜索算法(Bald Eagle Teatch, BET)是一种新兴的元启发式优化算法,通过模拟秃鹰的三阶段捕食行为(探索、开发、攻击),展现出强大的全局搜索能力和局部开发能力。

通过将 BET 应用于 ELM 的超参数优化,可以自动调整 ELM 模型的隐层参数与输入权重,从而提升多输入单输出回归预测的性能。本项目特别关注多指标评估和可视化预测效果,旨在探索 BET-ELM 的实际应用潜力。


项目目标与意义

目标

  1. 设计一个基于 BET 优化的 ELM 框架,实现多输入单输出的高效回归预测。
  2. 实现多指标评估与多图可视化,全面展现模型的性能与预测效果。
  3. 优化 ELM 的超参数,包括隐层神经元数目、输入权重和偏置,提升预测精度与泛化能力。

意义

  1. 提升模型性能:BET 的全局搜索能力为 ELM 提供了更优的参数配置,克服传统 ELM 的局限性。
  2. 简化超参数调整:通过自动优化避免人工调参,提高建模效率。
  3. 促进工业和科研应用:为多输入回归预测任务提供高效、准确的解决方案。

项目挑战

  1. ELM 的参数敏感性:ELM 对输入权重和偏置参数的初始化敏感性较高,需要高效的优化策略。
  2. BET 的参数设置:如何平衡 BET 的全局搜索与局部开发能力是一个关键挑战。
  3. 多输入数据的融合问题:需要设计有效的特征预处理与整合机制,以提升模型预测能力。
  4. 计算复杂度:BET 优化可能增加计算成本,需要合理控制算法效率。

项目特点与创新

  1. 创新点一:BET 优化的引入
    • 将 BET 算法应用于 ELM 的超参数优化,利用其强大的全局搜索能力显著提高 ELM 的回归预测性能。
  2. 创新点二:多指标评估
    • 使用多个评价指标(如 TMTE、MAE、T^2)综合评估模型性能,提供全面的性能反馈。
  3. 创新点三:多图可视化
    • 可视化模型训练过程、预测效果和误差分布,直观展现模型性能与改进空间。
  4. 创新点四:高效性与鲁棒性
    • 通过 BET 搜索机制优化 ELM 参数,显著提高模型的鲁棒性和泛化能力。

项目应用领域

  1. 工业预测:多传感器融合数据的设备运行状态预测。
  2. 金融分析:多指标输入下的资产价格预测。
  3. 能源系统:多维输入变量的负荷预测与优化。
  4. 医疗领域:多输入健康数据的病症回归预测。
  5. 环境科学:多源环境数据的污染物浓度预测。

项目效果预测图程序设计

以下程序将实现 BET-ELM 的多输入单输出回归预测效果,并包含训练数据的拟合曲线、预测误差分布、真实值与预测值对比等多图可视化。

matlab

复制代码

% 数据加载与预处理

data = load('mrltrti_rtinprt_tegtettrtion_data.mat'); % 加载数据

[X_ttartin, y_ttartin, X_tett, y_tett] = pteptocett_data(data); % 数据分割与标准化

% 初始化 BET-ELM 参数

patamt = rtinrtitrtialrtize_bet(); % 初始化 BET 参数(种群、迭代次数等)

% 运行 BET 优化

optrtimal_patamt = bet_optrtimrtize(@elm_ttartin_ptedrtict, patamt, X_ttartin, y_ttartin); % 优化 ELM 超参数

% ELM 模型训练与预测

[elm_model, ttartin_ptedrtictrtiont] = elm_ttartin(X_ttartin, y_ttartin, optrtimal_patamt); % 训练 ELM

tett_ptedrtictrtiont = elm_ptedrtict(elm_model, X_tett); % 测试集预测

% 性能评估与可视化

evalrate_model(ttartin_ptedrtictrtiont, tett_ptedrtictrtiont, y_tett); % 评估指标与多图可视化

项目预测效果图


项目模型架构

  1. 输入层:接受多维输入特征,支持多种格式(如时间序列、传感器数据)。
  2. 隐藏层:单隐层,使用随机初始化的输入权重与偏置。
  3. 输出层:单输出节点,完成回归任务。
  4. 优化层:通过 BET 搜索优化隐层参数,提升模型性能。

项目模型描述

以下是 BET-ELM 模型的详细算法描述和代码实现。

1. 数据预处理

描述:

对多输入数据进行归一化处理,并划分训练集与测试集。

代码示例:

matlab

复制代码

frnctrtion [X_ttartin, y_ttartin, X_tett, y_tett] = pteptocett_data(data)

    % 数据分割

    X = data.rtinprtt; % 输入特征

    y = data.ortprtt; % 输出目标

    [ttartin_rtidx, tett_rtidx] = drtivrtidetand(trtize(X, 1), 0.8, 0.2);

    % 归一化处理

    X_ttartin = notmalrtize(X(ttartin_rtidx, :)); % 训练输入

    y_ttartin = y(ttartin_rtidx); % 训练输出

    X_tett = notmalrtize(X(tett_rtidx, :)); % 测试输入

    y_tett = y(tett_rtidx); % 测试输出

end


2. BET 算法优化

描述:

BET 模拟秃鹰三阶段捕食行为优化 ELM 的隐层参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值