工作日常使用 EXPLAIN 总结,以及explain关键字段介绍:下边直接贴上SQL,如果有自己的表结构,可以用自己本地库,这里仅作参考;
Explain分析例子
DROP TABLE IF EXISTS `actor`;
CREATE TABLE `actor` (
`id` int (11) NOT NULL,
`name` varchar (45) DEFAULT NULL,
`update_time` datetime DEFAULT NULL,
PRIMARY KEY (`id`) 8
) ENGINE = InnoDB DEFAULT CHARSET = utf8;
INSERT INTO `actor` (
`id`,
`name`,
`update_time`
) VALUES (
1,
'a',
'2017‐12‐2 2 15:27:18'
),
(
2,
'b',
'2017‐12‐22 15:27:18'
),
(
3,
'c',
'2017‐12‐22 15:27:18'
);
DROP TABLE IF EXISTS `film`;
CREATE TABLE `film` (
`id` int (11) NOT NULL AUTO_INCREMENT,
`name` varchar (10) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_name` (`name`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8;
INSERT INTO `film` (`id`, `name`) VALUES (3, 'film0'),
(1, 'film1'),
(2, 'film 2');
DROP TABLE IF EXISTS `film_actor`;
CREATE TABLE `film_actor` (
`id` int (11) NOT NULL,
`film_id` int (11) NOT NULL,
`actor_id` int (11) NOT NULL,
`remark` varchar (255) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_film_actor_id` (`film_id`, `actor_id`) 30
) ENGINE = InnoDB DEFAULT CHARSET = utf8;
INSERT INTO `film_actor` (
`id`,
`film_id`,
`actor_id`
) VALUES (1, 1, 1),
(2, 1, 2),
(3, 2, 1);
explain 两个变种 :
explain extended:会在 explain 的基础上额外提供一些查询优化的信息。紧随其后通 过 show warnings 命令可以得到优化后的查询语句,从而看出优化器优化了什么。
额外还有 filtered 列,是一个半分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表 进行连接的行数(前一个表指 explain 中的id值比当前表id值小的表)。
explain中的列介绍
id列 :
id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的 顺序增长的。 id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。
select_type列:
select_type 表示对应行是简单还是复杂的查询:
simple:简单查询。查询不包含子查询和union ;
primary:复杂查询中最外层的 select;
subquery:包含在 select 中的子查询(不在 from 子句中);
derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为 派生表(derived的英文含义);
table列 :
这一列表示 explain 的一行正在访问哪个表。 当 from 子句中有子查询时,table列是 <derivenN> 格式,表示当前查询依赖 id=N 的查询,于是先执行 id=N 的查询。当有 union 时,UNION RESULT 的 table 列的值为<union1,2>,1和2表示参与 union 的 select 行id。
type列:
这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概 范围。
依次从最优到最差分别为:
system > const > eq_ref > ref > range > index > ALL
一般来说,得保证查询达到range级别,最好达到ref NULL:mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在 索引列中选取最小值,可以单独查找索引来完成,不需要在执行时访问表。
const, system:mysql能对查询的某部分进行优化并将其转化成一个常量(可以看show warnings 的结果)。用于 primary key 或 unique key 的所有列与常数比较时,所以表最多 有一个匹配行,读取1次,速度比较快。system是const的特例,表里只有一条元组匹配时为 system ;
eq_ref:primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合 条件的记录。这可能是在 const 之外最好的联接类型了,简单的 select 查询不会出现这种 type。
ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要 和某个值相比较,可能会找到多个符合条件的行。
range:范围扫描通常出现在 in(), between ,> ,<, >= 等操作中。使用一个索引来检索给定 范围的行
index:扫描全表索引,这通常比ALL快一些。
ALL:即全表扫描,意味着mysql需要从头到尾去查找所需要的行。通常情况下这需要增加索 引来进行优化了。
possible_keys列
这一列显示查询可能使用哪些索引来查找。
explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中 数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。 如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可 以创造一个适当的索引来提高查询性能,然后用 explain 查看效果。
key列
这一列显示mysql实际采用哪个索引来优化对该表的访问。
如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索 引,在查询中使用 force index、ignore index。
key_len列
这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。
ref列
这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常 量),字段名(例:film.id)
rows列
这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。
Extra列
这一列展示的是额外信息。常见的重要值如下;
索引最佳实践
-
全值匹配;
-
最左前缀法则 如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引 中的列;
-
不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转 向全表扫描;
-
存储引擎不能使用索引中范围条件右边的列;
-
尽量使用覆盖索引(只访问索引的查询(索引列包含查询列)),减少select *语句;
-
mysql在使用不等于(!=或者<>)的时候无法使用索引会导致全表扫描;
-
is null,is not null 也无法使用索引;
-
like以通配符开头('$abc...')mysql索引失效会变成全表扫描操作;
-
字符串不加单引号索引失效
-
少用or或in,用它查询时,mysql不一定使用索引,mysql内部优化器会根据检索比例、 表大小等多个因素整体评估是否使用索引;