Problem Description
不光 UMR 喜欢吃这东西,最近很火的康纳也很稀饭次。
不过今天有两个欧巴桑在卖可丽饼,而康纳跟她们都很熟。康纳想买 n 个可丽饼,而两个欧巴桑对于每个可丽饼都会有一个售价分别为 ai 和 bi。康纳为了两个欧巴桑以及和她之间的友谊,必须确保每次买完一个可丽饼后,两个欧巴桑从康纳那得到的总钱数的差值不能超过 500,超过 500 两个欧巴桑就会打起来,康奈也就没法买可丽饼了。两个大妈为了售价的平衡,不让康纳花太多的钱,所以两个售价的总和 ai+bi=1000。
Input
输入数据有多组(数据组数不超过 100),到 EOF 结束。
每组输入第一行输入一个数 n。表示康纳要买的总的可丽饼数。
接下来 n 行,每行两个空格分隔的整数 ai 和 gi,分别表示第 i 个可丽饼欧巴桑 1 和欧巴桑 2 的售价。
(1 <= n, i <= 1000)
(0 <= ai, bi <= 1000 && ai+bi=1000)
Output
如果康纳能够买到 n 个可丽饼(中途大妈不会打起来),则输出 "owo",否则输出 "TwT"(输出不包括引号)。
Example Input
2 1 999 999 1
Example Output
owo
Hint
感觉这道题应该是包含了博弈的思想吧,就是说如果如果有一方超过另一方500多,那么之后可以买另一方的
可丽饼,就可以将两个大妈的收入之差控制在500左右.
#include<iostream>
using namespace std;
int main()
{
int a,b,c,d;
while(cin>>a)
{
for(int i=1;i<=a;i++)
{
cin>>b>>c;
}
cout<<"owo"<<endl;
}
return 0;
}