【snail-job】比xxl-job更好用的分布式任务重试和分布式任务调度平台

为什么需要使用分布式定时任务

在使用分布式定时任务的时候,我们必须要清楚为什么要使用分布式定时任务?用一些单机的定时任务如Spring的定时任务、Timer不行吗?下面我们介绍一下两种定时任务的常见实现以及场景

单机定时任务

常见实现

我们在平常实现单机定时任务有如下几种技术方案:

  1. Timer ,Java内置提供;
  2. ScheduledExecutorService ,定时任务线程池,通过提交任务实现定时任务;
  3. Spring的@Scheduled注解,直接通过注解和Corn表达式即可简单定义定时任务,不过这其实是可以结合数据库改造成分布式定时任务,后续文章会进行专门介绍;

常见场景

  1. 资源有限:团队规模小,资源受限,需要简化基础设施
  2. 用户量小:服务用户量较小,单机处理能力足够
  3. 设计为单实例运行:某些应用本身就设计为单实例运行
  4. 有状态服务:某些有状态服务难以水平扩展
  5. 容错要求不高的任务:即使任务重复执行也不会造成数据问题,任务执行偶尔失败不会造成严重后果,即使自动执行失败,也可以通过手动干预恢复

单机定时任务主要适用于架构为单机、对定时任务可靠、容错性要求不高的业务

分布式定时任务

常见实现

1. Quartz集群模式

快速入门文档

核心特点:

  • 基于数据库实现任务分布式协调
  • 强大的cron表达式支持
  • 任务持久化和高可用
  • 成熟稳定,Java生态标准调度库

实现原理:

  • 使用数据库锁机制防止任务重复执行
  • 多个节点通过共享数据库表来协调任务
  • 节点间通过"争抢"机制决定任务执行权

适用场景:

  • 已有Quartz单机应用需要扩展到分布式
  • 需要分布式事务支持的场景
  • 对任务执行有严格要求的企业级应用

缺点:

  • 依赖数据库,性能受限
  • 集群规模较大时性能下降明显
2. XXL-Job

XXL job中文文档

核心特点:

  • 轻量级分布式任务调度框架
  • 简洁易用的管理界面
  • 丰富的任务类型(如GLUE模式支持在线编辑代码)
  • 国产开源项目,社区活跃度高

实现原理:

  • 基于调度中心和执行器分离的架构
  • 调度中心统一管理任务,执行器执行任务
  • 调度中心通过HTTP与执行器通信

适用场景:

  • 中小型应用的分布式任务调度
  • 需要可视化管理界面的场景
  • 灵活性要求高的业务场景

缺点:

  • 功能相比更大型框架稍简单
  • 大规模部署经验较少
3. Elastic-Job / ShardingSphere-ElasticJob

官方文档
核心特点:

  • 基于Zookeeper的分布式协调
  • 支持任务分片,可并行处理大数据量任务
  • 丰富的作业类型(简单作业、数据流作业、脚本作业)
  • 弹性扩容缩容支持

实现原理:

  • 使用Zookeeper实现分布式协调和选主
  • 通过分片算法将任务分配给不同节点
  • 支持失效转移和错过执行补偿

适用场景:

  • 需要处理海量数据的批处理场景
  • 要求高可靠性和动态扩展的场景
  • 对任务精细化控制要求高的场景

缺点:

  • 依赖Zookeeper
  • 配置相对复杂
4. ShedLock

核心特点:

  • 轻量级分布式锁实现
  • 与Spring集成良好
  • 支持多种存储(JDBC、Redis、MongoDB等)
  • 非侵入式设计

实现原理:

  • 通过分布式锁确保任务在集群中只执行一次
  • 不是完整的调度框架,仅解决重复执行问题
  • 通常与Spring的@Scheduled结合使用

适用场景:

  • Spring应用需要简单防止任务重复执行
  • 不需要复杂调度功能的场景
  • 作为已有单机任务的分布式升级方案

缺点:

  • 功能相对简单,不是完整的调度框架
  • 没有可视化管理界面
5. SchedulerX (阿里云)

产品链接
核心特点:

  • 阿里云提供的企业级分布式调度服务
  • 高可靠、高可用、高性能
  • 支持秒级调度和多种高级功能
  • 提供完善的监控报警机制

实现原理:

  • 基于云原生架构设计
  • 与阿里云生态深度集成
  • 底层由阿里内部使用多年的SchedulerX2.0驱动

适用场景:

  • 阿里云用户
  • 对可靠性要求极高的企业级应用
  • 需要云服务支持的场景

缺点:

  • 付费服务
  • 与阿里云耦合
6. Spring Cloud Task

官方文档
核心特点:

  • Spring Cloud生态组件
  • 专注于短期微服务任务
  • 与Spring Batch集成良好
  • 提供任务执行的记录和追踪

实现原理:

  • 基于Spring Cloud架构
  • 利用数据库记录任务执行状态
  • 与Spring Cloud Stream集成实现事件驱动

适用场景:

  • Spring Cloud微服务架构
  • 短期任务执行和记录
  • 与Spring Batch结合的批处理场景

缺点:

  • 不是传统的定时调度框架
  • 主要关注点在任务执行而非调度
7. PowerJob (原XxlJob-Plus)

仓库地址
核心特点:

  • 基于Actor模型的新一代分布式调度与计算框架
  • 支持CRON、API、固定频率等多种调度方式
  • 支持工作流、广播、Map/MapReduce等多种执行模式
  • 完善的运维监控能力

实现原理:

  • 基于去中心化的Actor设计理念
  • 支持无限水平扩展
  • 采用多级时间轮算法提高调度性能

适用场景:

  • 需要高性能的大规模任务调度场景
  • 复杂的工作流编排场景
  • 需要处理海量任务的大型分布式系统

缺点:

  • 相对较新,生产验证案例相对较少
  • 学习曲线较陡
7. Snail-Job(简单实用)

官方文档
核心功能

开源分布式任务调度框架对比

特性QuartzElastic-JobXXL-JOBPowerJobSnail Job
跨语言能力不支持不支持不支持不支持支持Java(1.8/17)、原生Python客户端、原生Go客户端
定时调度CronCronCronCRON、固定频率、固定延迟、OpenAPI1. 定时任务
2. 秒级任务(无需依赖外部中间件)
3. 固定频率
4. OpenAPI
重试任务不支持不支持不支持不支持1. 支持本地&远程重试模式
2. 支持各种常用组件的重试(dubbo/feign等)
3. 支持多种退避策略
4. 丰富的重试风暴管控手段
任务编排不支持不支持不支持支持仿钉钉工作流设计,颜值高、体验好
分布式计算不支持静态分片广播支持1. 广播执行
2. 集群执行
3. 静态分片
4. 动态分片
多语言Java1. Java
2. 脚本任务
1. Java
2. 脚本任务
支持1. Java
2. CMD(本地脚本、远程脚本、参数传入)
3. PowerShell(本地脚本、远程脚本、参数传入)
4. Shell(本地脚本、远程脚本、参数传入)
5. HTTP任务
用户管理不支持支持支持不支持完备的用户管理和权限管理
安全 Token不支持不支持支持不支持支持
可视化1. 历史记录
2. 运行日志(不支持存储)
3. 监控大盘
支持1. 历史记录
2. 实时日志(支持持久化、可视化)
3. 监控大盘(实时调度数据展示)
4. 失败调度排名
5. 在线集群查看等
可运维启用、禁用任务1. 启用、禁用任务
2. 手动运行任务
3. 停止任务
支持1. 启用、禁用任务
2. 手动运行任务
3. 停止任务
4. 手动重试
报警监控邮件邮件邮件支持配置多种告警场景,通知方式支持:
1. 邮件
2. 钉钉
3. 企微
4. 飞书
5. Webhook
性能每次调度通过DB抢锁,对DB压力大ZooKeeper是性能瓶颈采用Master节点调度,Master节点压力大无锁化设计系统采用多bucket模式,借助负载均衡算法,确保每个节点能够均衡处理任务,同时支持无限水平扩展,轻松应对海量任务调度
接入成本只依赖DB接入成本低需引入Zookeeper增加系统复杂性和维护成本只依赖DB接入成本低依赖DB接入成本低只依赖DB接入成本低
### 分布式任务调度系统的特性对比 #### Snail Job 的特点 Snail Job 是一款分布式任务调度框架,专注于提供简单易用的任务管理功能。其核心优势在于轻量级设计易于集成到现有项目中[^1]。 - **架构简洁**:采用微服务设计理念,支持水平扩展。 - **可视化操作界面**:提供了直观的操作面板来管理监控作业执行情况。 - **丰富的告警机制**:内置多种通知方式如邮件、短信等,在异常情况下及时提醒管理员处理问题。 - **高可用性保障**:通过集群部署实现故障转移以及负载均衡等功能,确保系统稳定运行。 ```python from snail_job import create_scheduler, add_task scheduler = create_scheduler() add_task(scheduler, 'my_first_task', interval=60) ``` #### XXL-JOB 的特点 XXL-JOB 则是一款来自中国的开源分布式任务调度平台,具有强大的社区支持技术文档资源。它不仅具备基本的定时任务调度能力,还特别强调企业级应用场景下的需求满足度[^2]。 - **多租户模式**:允许不同部门或团队在同一套实例上独立创建维护各自的计划任务而互不干扰。 - **弹性伸缩性强**:能够动态调整工作节点数量以适应业务高峰期的变化;同时支持跨数据中心调用远程服务器上的程序片段作为子流程的一部分被执行。 - **权限管理体系完善**:细粒度的角色分配策略可以精确控制用户所能访问的数据范围及其可进行的操作种类。 - **数据持久化存储**:所有配置信息均保存于关系型数据库内以便长期保留历史记录并方便后续查询统计分析等工作开展。 ```java import com.xxl.job.core.biz.model.ReturnT; import com.xxl.job.core.handler.IJobHandler; public class MyTask implements IJobHandler { @Override public ReturnT<String> execute(String param) throws Exception { System.out.println("Executing my custom task..."); return SUCCESS; } } ``` #### 特性差异总结 两者都是优秀的分布式任务调度解决方案,但在某些方面存在区别: | 对比项 | Snail Job | XXL-JOB | | --- | --- | --- | | 社区活跃程度 | 较低 | 高 | | 开源协议友好性 | MIT License | Apache License 2.0 | | 是否支持多租户 | 否 | 是 | | 权限管理系统复杂度 | 简单 | 复杂 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐Chao努力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值