Riesz基:
一组向量被说成是希尔伯特空间的Riesz基,他必须满足:
是线性独立的;
存在常数A>0,B>0,使得
显然,Riesz基也是一个标架,但其要求要比一般的标架严格,即是线性独立的。可以证明,Riesz基的对偶标架{}也是线性独立的,因此也构成一个Riesz基。Riesz基和其对偶基构成双正交关系。
1、正交小波
若Riesz基,满足
(1)
则称生成的母小波
为正交小波。式中
(2)
(1)式指出,在同一尺度j下,不同位移之间是正交的。同时,在同一位移
下,不同尺度
之间的
也是正交的。
2.半正交小波
若 满足
(3)
则称生成的母小波
为半正交小波,(3)式的含义是,若
,则
。
这时,对不同的位移,
不是正交的。
3.双正交小波
若和其对偶小波{
}之间满足
(4)
则称生成 为
的双正交小波。
半正交小波不是正交小波,双正交小波指的是和其对偶
之间的关系,因此也不是正交小波。但是一个正交小波必定是半正交,也是双正交的。
半正交小波可以变成正交小波。
总结:
正交小波也就是不同尺度不同位移之间的向量都正交。
半正交就是同一尺度下不同位移之间正交。
正交小波和半正交小波都是一个小波函数内部之间是否正交。
而双正交小波是指小波函数与另一个函数(对偶小波函数)之间的正交关系。
双正交小波,指两个小波之间正交,但每个小波自己内部向量不一定正交。