正交小波、半正交小波、双正交小波

Riesz基:

一组向量\left \{ \varphi _{k} ,k\in Z\right \}被说成是希尔伯特空间的Riesz基,他必须满足:

\left \{ \varphi _{k} ,k\in Z\right \}是线性独立的;

存在常数A>0,B>0,使得A\left \| x \right \|_{2}^{2}\leqslant \sum_{k}^{}\left | \left \langle x,\varphi _{k} \right \rangle \right |^{2}\leqslant B\left \| x \right \|_{2}^{2}

显然,Riesz基也是一个标架,但其要求要比一般的标架严格,即是线性独立的。可以证明,Riesz基的对偶标架{\hat{\varphi }_{k},k\in Z}也是线性独立的,因此也构成一个Riesz基。Riesz基和其对偶基构成双正交关系。

1、正交小波

若Riesz基\left \{ \psi _{j,k}(t),j,k\in Z \right \},满足

\left \langle \psi _{j,k},\psi _{j^{'},k^{'}}^{} \right \rangle=\delta _{j,j^{'}}\delta _{k,k^{'}}                                                       (1)

则称生成\psi _{j,k}(t)的母小波\psi (t)为正交小波。式中

\delta _{j,j^{'}}\delta _{k,k^{'}}=\delta (j-j^{'})\delta (k-k^{'})=\binom{1,j=j^{'},k=k^{'}}{0,other}                                 (2)

(1)式指出,在同一尺度j下,不同位移之间\psi _{j,k}是正交的。同时,在同一位移k下,不同尺度j之间的\psi _{j,k}也是正交的。

2.半正交小波

\left \{ \psi _{j,k}(t),j,k\in Z \right \} 满足

\left \langle \psi _{j,k},\psi _{j^{'},k^{'}}^{} \right \rangle=0     j^{'},k^{'}\in Z                                  (3)

则称生成\psi _{j,k}(t)的母小波\psi (t)为半正交小波,(3)式的含义是,若j=j^{'},则\left \langle \psi _{j,k},\psi _{j^{'},k^{'}}^{} \right \rangle\neq 0

这时,对不同的位移k\psi _{j,k}不是正交的。

3.双正交小波

\left \{ \psi _{j,k}(t),j,k\in Z \right \}和其对偶小波{\hat{\psi _{j,k}}(t),j,k\in Z}之间满足

\left \langle \psi _{j,k},\hat{\psi _{j^{'},k^{'}}}\right \rangle=\delta _{j,j^{'}}\delta _{k,k^{'}}    j^{'},k^{'}\in Z                              (4)
则称生成 \psi _{j,k}(t)\psi (t)的双正交小波。 

半正交小波不是正交小波,双正交小波指的是\psi (t)和其对偶\hat{\psi }(t)之间的关系,因此也不是正交小波。但是一个正交小波必定是半正交,也是双正交的。

半正交小波可以变成正交小波。

总结:

正交小波也就是不同尺度不同位移之间的向量都正交。

半正交就是同一尺度下不同位移之间正交。

正交小波和半正交小波都是一个小波函数内部之间是否正交。

而双正交小波是指小波函数与另一个函数(对偶小波函数)之间的正交关系。

双正交小波,指两个小波之间正交,但每个小波自己内部向量不一定正交。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值