动态规划-04混合背包

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiaoxun2802/article/details/80019583

前面的三种背包问题介绍完后,基于这三种背包问题可以引申出这三类的混合形式-混合背包问题。可以两两混合,也可以三种混合,无非是在分析的时候,根据每个物品的出现次数将其分类组合。

假设:定义可容纳总重量W =10 Kg,物品种类 N = 3,每件物品重量w[i],对应价值v[i],求解在可容纳重量范围内如何选取可获最大价值。

具体题目:

可能出现的情况:

由于使用二维数组较为繁琐,以下仅给出使用一维数组解法:

//一维数组解法-混合背包
	private static int[] BP_method04_1D(int m,int n,int[] w,int[] v,int[] counts){
		int c[] = new int[m+1];
		for (int i = 0; i < m+1; i++) {
			c[i] = 0;//不必完全装满,则全部初始化为0
		}
		for (int i = 0; i < n; i++) {
			//多重背包
			for(int k = 1; k < counts[i]; k <<= 1){
					for (int j = m; j >= k * w[i]; j--) {//限定总重量
						c[j] = Math.max(c[j-k*w[i]] + k*v[i], c[j]); 
					}
				counts[i] -= k;
			}
			if (counts[i] == 1) {//01背包
				for (int j = m; j >= w[i]; j--) {//限定总重量
					c[j] = Math.max(c[j-w[i]] + v[i], c[j]); 
				}
			}else{//完全背包
				for (int j = w[i]; j < m+1; j++) {//限定总重量
					c[j] = Math.max(c[j-w[i]] + v[i], c[j]); 
				}
			}
		}
		return c;
	}

其输出如下:

一维数组解法:
0 0 0 4 5 6 6 9 10 11 12 

 

 

 

展开阅读全文

没有更多推荐了,返回首页