梯度下降法python+numpy实现

本文介绍了批量梯度下降法(BGD)、随机梯度下降法(SGD)和小批量梯度下降法(MBGD)的原理,并提供了使用Python和NumPy实现这三种梯度下降方法的代码示例,展示了它们在拟合系数过程中各自的效果。
摘要由CSDN通过智能技术生成

批量梯度下降法(Batch Gradient Descent, BGD):使用所有样本在当前点的梯度值来对变量参数进行更新操作。

随机梯度下降法(Stochastic Gradient Descent, SGD):在更新变量参数的时候,选取一个样本的梯度值来更新参数。

小批量梯度下降法(Mini-batch Gradient Descent, MBGD):集合BGD和SGD的特性,从原始数据中,每次选择n个样本来更新参数值。

以下为分别采用BGD、SGD、MBGD拟合y=3x_1+4x_2的系数[3, 4]的代码:

import time
import numpy as np

# 样本数为100条,特征数为二维
def get_data(sample_num=100):
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值