Hive项目实战二

本文介绍了在Hive项目中进行数据清洗的过程,包括分析video.txt文件中视频分类的数据结构,通过MapReduce实现数据清洗,确保每个视频的分类正确,并处理缺失或不合法的数据。在MapUtils.java工具类中,清洗逻辑包括去除类别中的空格和替换特定分隔符。最后,通过MapVideo和MapRun类执行MapReduce任务,完成数据清洗并上传到HDFS。
摘要由CSDN通过智能技术生成

数据清洗

1)数据分析

在video.txt中,视频可以有多个所属分类,每个所属分类用&符号分割,并且分割的两边有空格字符,多个相关视频又用“\t”进行分割。为了分析数据时方便对存在多个子元素的数据进行操作,我们首先进行数据重组清洗操作。

具体做法:将所有的类别用“&”分割,同时去掉两边空格,多个相关视频 id 也使用“&”进行分割,这里看起来将"&"换成"\t"更方便,但是如果这样做就会将视频所属分类分割成不同字段,这样就没有办法进行清洗了

   2)注意事项

这里的数据清洗不涉及reduce操作,所以只用map即可,视频的相关视频id可以没有,但是比如评论数必须有值,没有评论即为0,所以如果一条数据的字段缺少,也是脏数据,是要被清洗的

2.数据清洗具体代码编写

创建的是maven工程,所以要首先导入pom.xml文件



  • <project xmlns="http://maven.apache.org/POM/4.0.0"
     


  • xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     


  • xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
     


  • http://maven.apache.org/xsd/maven-4.0.0.xsd">
     


  • <modelVersion>4.0.0</modelVersion>
     


  • <groupId>com.z</groupId>
     


  • <artifactId>youtube</artifactId>
     


  • <version>0.0.1-SNAPSHOT</version>
     


  • <packaging>jar</packaging>
     


  • <name>youtube</name>
     


  • <url>http://maven.apache.org</url>
     


  • <properties>
     


  • <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
     


  • </properties>
     


  • <repositories>
     


  • <repository>
     


  • <id>centor</id>
     


  • <url>http://central.maven.org/maven2/</url>
     


  • </repository>
     


  • </repositories>
     


  • <dependencies>
     


  • <dependency>
     


  • <groupId>junit</groupId>
     


  • <artifactId>junit</artifactId>
     


  • <version>3.8.1</version>
     


  • <scope>test</scope>
     


  • </dependency>
     


  • <dependency>
     


  • <groupId>org.apache.hadoop</groupId>
     


  • <artifactId>hadoop-client</artifactId>
     


  • <version>2.7.2</version>
     


  • </dependency>
     


  • <dependency>
     


  • <groupId>org.apache.hadoop</groupId>
     


  • <artifactId>hadoop-yarn-server-resourcemanager</artifactId>
     


  • <version>2.7.2</version>
     


  • </dependency>
     


  • </dependencies>
     


  • </project>

     

代码具体编写思路:

首先创建一个工具类,在工具类中对数据进行清洗,即过滤掉不合法数据,去掉视频类别中“&”符号两边的空格,将“\t”换成“&”

工具类MapUtils.java



  • package cn.ys;
     



  •  


  • public class MapUtils {
     


  • public static String getTest(String ori) {
     


  •                 String[] splits = ori.split("\t");
     


  •                 //1、过滤不合法数据
     


  •                 if(splits.length < 9) return null;
     


  •                 //2、去掉&符号左右两边的空格
     


  •                 splits[3] = splits[3].replaceAll(" ", "");
     


  •                 StringBuilder sb = new StringBuilder();
     


  •                 //3、\t 换成&符号
     


  •                 for(int i = 0; i < splits.length; i++){
     


  •                 sb.append(splits);
     


  •                 if(i < 9){
     


  •                 if(i != splits.length - 1){
     


  •                 sb.append("\t");
     


  •                 }
     


  •                 }else{
     


  •                 if(i != splits.length - 1){
     


  •                 sb.append("&");
     


  •                 }
     


  •                 }
     


  •                 }
     


  •                 return sb.toString();
     


  •         }
     


  • }

     

这里可以在MapUtils.java中插入以下代码进行简单的测试,看是否能够达到数据清洗的目的



  • public static void main(String[] args) {
     


  • String test="f9_oaKYFM0c        dvpwiiii        732        People & Blogs        107        328022        3.6        321        619        5Ud0t3KQfmk        QBGoAH-w4OM        kD7-AU0L1RU        i1e0x6w6U3M        llwhZMC65C0        vce_NSpJr98        8JDcV1IF8Tw        lwbeuufziAE        2yvWSNhXyME        ky6vPrqTIIA        fvA0HpquoB0        Nds-Bg60VmU        v3AXDJtYP2w        tDXS6x1HDWk        qs7tqSv-hgc        b36Zg7yXfEg        yoMckc0X1gA        VzngDp2n2GA        GkmbiZMnrfI        Ad09vdpHmFM ";
     


  •             System.out.println(getTest(test));
     


  • }

     

Map类MapVideo.java



  • package cn.ys;
     



  •  


  • import java.io.IOException;
     



  •  


  • import org.apache.commons.lang.StringUtils;
     


  • import org.apache.hadoop.hdfs.util.EnumCounters.Map;
     


  • import org.apache.hadoop.io.NullWritable;
     


  • import org.apache.hadoop.io.Text;
     


  • import org.apache.hadoop.mapreduce.Mapper;
     



  •  



  •  


  • public class MapVideo extends Mapper<Object, Text, NullWritable, Text>{
     



  •  


  •         @Override
     


  •         protected void map(Object key, Text value, Mapper<Object, Text, NullWritable, Text>.Contextcontext)
     


  •                         throws IOException, InterruptedException {
     


  •                 Text text = new Text();
     


  •                 String video = MapUtils.getTest(value.toString());
     


  •                 text.set(video);
     



  •  


  •                 if(video!=null) {
     


  •                         context.write(NullWritable.get(),text);
     


  •                 }
     



  •  


  •         }
     


  • }

     

Run类MapRun.java



  • package cn.ys;
     



  •  


  • import java.io.IOException;
     



  •  


  • import org.apache.hadoop.conf.Configuration;
     


  • import org.apache.hadoop.fs.FileSystem;
     


  • import org.apache.hadoop.fs.Path;
     


  • import org.apache.hadoop.io.NullWritable;
     


  • import org.apache.hadoop.mapreduce.Job;
     


  • import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
     


  • import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
     


  • import org.apache.hadoop.util.Tool;
     


  • import org.apache.hadoop.util.ToolRunner;
     



  •  


  • import com.sun.jersey.core.impl.provider.entity.XMLJAXBElementProvider.Text;
     



  •  


  • public class MapRun implements Tool{
     



  •  


  •         private Configuration conf = null;
     


  •         public Configuration getConf() {
     


  •                 // TODO Auto-generated method stub
     


  •                 return this.conf;
     


  •         }
     



  •  


  •         public void setConf(Configuration conf) {
     



  •  


  •                 this.conf=conf;
     


  •         }
     



  •  


  •         public int run(String[] args) throws Exception {
     


  •                 conf = this.getConf();
     


  •                 conf.set("inpath", args[0]);
     


  •                 conf.set("outpath", args[1]);
     


  •                 Job job = Job.getInstance(conf, "youtube-video-etl");
     


  •                 job.setJarByClass(MapRun.class);
     


  •                 job.setMapperClass(MapVideo.class);
     


  •                 job.setMapOutputKeyClass(NullWritable.class);
     


  •                 job.setMapOutputValueClass(Text.class);
     


  •                 job.setNumReduceTasks(0);
     


  •                 this.initJobInputPath(job);
     


  •                 this.initJobOutputPath(job);
     


  •                 return job.waitForCompletion(true) ? 0 : 1;
     


  •         }
     



  •  


  •         private void initJobOutputPath(Job job) throws IOException {
     


  •                 Configuration conf = job.getConfiguration();
     


  •                 String outPathString = conf.get("outpath");
     


  •                 FileSystem fs = FileSystem.get(conf);
     


  •                 Path outPath = new Path(outPathString);
     


  •                 if(fs.exists(outPath)){
     


  •                 fs.delete(outPath, true);
     


  •                 }
     


  •                 FileOutputFormat.setOutputPath(job, outPath);
     



  •  


  •         }
     



  •  


  •         private void initJobInputPath(Job job) throws IOException {
     


  •                 Configuration conf = job.getConfiguration();
     


  •                 String inPathString = conf.get("inpath");
     


  •                 FileSystem fs = FileSystem.get(conf);
     


  •                 Path inPath = new Path(inPathString);
     


  •                 if(fs.exists(inPath)){
     


  •                 FileInputFormat.addInputPath(job, inPath);
     


  •                 }else{
     


  •                 throw new RuntimeException("HDFS 中该文件目录不存在:" + inPathString);
     


  •                 }
     


  •                 }
     



  •  


  •         public static void main(String[] args) {
     


  •                 try {
     


  •                 int resultCode = ToolRunner.run(new MapRun(), args);
     


  •                 if(resultCode == 0){
     


  •                 System.out.println("Success!");
     


  •                 }else{
     


  •                 System.out.println("Fail!");
     


  •                 }
     


  •                 System.exit(resultCode);
     


  •                 } catch (Exception e) {
     


  •                 e.printStackTrace();
     


  •                 System.exit(1);
     


  •                 }
     


  •                 }
     



  •  


  •         }
     




  •  

3.打包到集群上运行Mapreduce

在eclipse中打成jar包,项目右键Run As----Maven build,使用-P local clean package打包

 

 

 

这个命令是不将项目的依赖一起打包的,因为hadoop集群中已经有这些依赖包了,就算没有,也不会将这些依赖打包,这样可以保证运行效率

将打包好的jar包传输到集群上,然后将数据文件上传到HDFS中

bin/hdfs dfs -put 数据文件在集群中的位置  要上传到hdfs中的目录

然后运行此mapreduce任务

bin/hadoop jar  jar包在集群中的位置  cn.ys.MapRun  输入目录(数据文件在hdfs中的位置)    输出目录

mapreduce任务跑完之后可以在输出目录中查看数据是否清洗成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值