机器学习
文章平均质量分 58
机器学习
才不是小emo的小杨
这个作者很懒,什么都没留下…
展开
-
数据集sklearn
print("鸢尾花数据集的特征集为:\n", iris.data, iris.data.shape) # 查看特征集的种类和数量。print("鸢尾花数据集的特征名字为:\n", iris["feature_names"])print("特征值的训练集为:\n", x_train, x_train.shape)return训练集特征值,测试集特征值,训练集目标值,测试集目标值(# 代码1,sklearn,调用函数,鸢尾花的数据集。print("鸢尾花数据集:\n", iris)相同的种子采样结果相同。原创 2023-05-28 13:59:40 · 96 阅读 · 0 评论 -
机器学习相关
定义:机器学习时从数据中自动分析获得模型(可以假想成一种规律),并利用模型对未知数据进行预测。5)模型评估(如果模型的效果不够好,我们就返回第2)的环节,重新循环)3)特征工程(其实也算是数据处理,将数据处理为电脑能够使用的数据)结构:特征值+目标值(有一些数据集没有目标值)目标值:连续性的数据——回归问题。4)机器学习算法训练——模型。目标值:类别——分类问题。原创 2023-05-27 21:21:24 · 61 阅读 · 1 评论 -
特征工程中字典特征的提取
DictVectorizer.fit_transform(x) x:字典或者包含字典迭代器返回值:返回spare矩阵。print(f"特征名字:\n{transfer1.get_feature_names_out()}")data = [{'city': '北京', 'temperature': 100},{'city': '上海', 'temperature': 60},{'city': '深圳', 'temperature': 30}]1.将数据集的特征->字典类型。# 代码1:字典特征的抽取问题。原创 2023-05-28 12:29:29 · 90 阅读 · 0 评论 -
机器学习文本特征提取
print(f"data_new:\n{data_new.toarray()}") # sparse中写了一个对象,对象中有一个方法.toarray()能够查看这个特征的矩阵形式。print(f"data_new:\n{data_new.toarray()}") # sparse中写了一个对象,对象中有一个方法.toarray()能够查看这个特征的矩阵形式。print(f"data_new的sparse矩阵为:\n{data_new}")data = ["我爱北京天安门", "天安门上太阳升"]原创 2023-05-30 20:55:39 · 166 阅读 · 1 评论