- 链接:https://www.nowcoder.com/questionTerminal/fe298c55694f4ed39e256170ff2c205f
来源:牛客网
有这样一道智力题:“某商店规定:三个空汽水瓶可以换一瓶汽水。小张手上有十个空汽水瓶,她最多可以换多少瓶汽水喝?”答案是5瓶,方法如下:先用9个空瓶子换3瓶汽水,喝掉3瓶满的,喝完以后4个空瓶子,用3个再换一瓶,喝掉这瓶满的,这时候剩2个空瓶子。然后你让老板先借给你一瓶汽水,喝掉这瓶满的,喝完以后用3个空瓶子换一瓶满的还给老板。如果小张手上有n个空汽水瓶,最多可以换多少瓶汽水喝?
输入描述:
输入文件最多包含10组测试数据,每个数据占一行,仅包含一个正整数n(1<=n<=100),表示小张手上的空汽水瓶数。n=0表示输入结束,你的程序不应当处理这一行。
输出描述:
对于每组测试数据,输出一行,表示最多可以喝的汽水瓶数。如果一瓶也喝不到,输出0。
示例1
输入
3
10
81
0
输出
1
5
40
import java.util.*;
public class Main{
public static void main(String[] args){
Scanner scanner =new Scanner(System.in);
while(scanner.hasNext())
{
int n=scanner.nextInt();
System.out.println(Drink(n));
}
}
public static int Drink(int n)
{
if(n<=0)
return 0;
else if(n==3)
return 1;
else if(n==2)
return 1;
else//此时表明对应为3的倍数,递归
{
int h=0;
h=n/3;
return h+Drink(n-3*h+h);
}
}
}
- 链接:https://www.nowcoder.com/questionTerminal/bb06495cc0154e90bbb18911fd581df6
来源:牛客网
有一组数,对于其中任意两个数组,若前面一个大于后面一个数字,则这两个数字组成一个逆序对。请设计一个高效的算法,计算给定数组中的逆序对个数。
给定一个int数组A和它的大小n,请返回A中的逆序对个数。保证n小于等于5000。
测试样例:
[1,2,3,4,5,6,7,0],8
返回:7
import java.util.*;
public class AntiOrder {
public int count(int[] A, int n) {
// write code here
if (A == null || n == 0) {
return 0;
}
return mergeSortRecursion(A, 0, n - 1);
}
/**
* 递归实现归并排序
*
*/
public static int mergeSortRecursion(int[] arr, int l, int r) {
if (l == r) { // 当待排序数组长度为1时,递归开始回溯,进行merge操作
return 0;
}
int mid = (l + r) / 2;
return mergeSortRecursion(arr, l, mid) + mergeSortRecursion(arr, mid + 1, r) + merge(arr, l, mid, r);
}
/**
* 合并两个已排好序的数组s[left...mid]和s[mid+1...right]
*
* @return 返回合并过程中累加逆序对
*/
public static int merge(int[] arr, int left, int mid, int right) {
int[] temp = new int[right - left + 1]; // 辅助存储空间 O(n)
int index = 0;
int i = left;
int j = mid + 1;
int inverseNum = 0; // 新增,用来累加数组逆序对
while (i <= mid && j <= right) {
if (arr[i] <= arr[j]) {
temp[index++] = arr[i++];
} else {
// 当前一个数组元素大于后一个数组元素时,累加逆序对
// s[i] > s[j] -> s[i]...s[mid] > s[j]
inverseNum += (mid - i + 1);
temp[index++] = arr[j++];
}
}
while (i <= mid) {
temp[index++] = arr[i++];
}
while (j <= right) {
temp[index++] = arr[j++];
}
for (int k = 0; k < temp.length; k++) {
arr[left++] = temp[k];
}
return inverseNum;
}
}