稀疏矩阵【压缩算法】,具体代码没有,只是思想

本文探讨了稀疏矩阵的压缩算法,虽然未提供具体的实现代码,但深入讲解了算法的设计原理,对于理解如何有效地存储和操作稀疏矩阵具有指导意义。
摘要由CSDN通过智能技术生成

/*
*
* 稀疏矩阵的知识,比较重要的是压缩存储!
* 定义: 假设m行n列的矩阵中,只有t个非零元素,则成 t/(m*n)为稀疏因子,当稀疏因子<=0.05的时候称为稀疏矩阵
* 产生的问题: 大约95%的元素都是0,占用的空间很大,计算的时候也和这些0做了很多运算(+,-,*,/),而/法还不能除0,所以特别麻烦
* 
* 压缩存储:
* (1)特殊矩阵(三角矩阵,对角矩阵)的压缩存储比较简单
* (2)随机稀疏矩阵的压缩存储:

     1.三元组顺序表	
		
	   元素类型:(行号,列号,元素值)
	   稀疏矩阵类型:(一个数组,行数,列数,非零元个数)  //改进后的类型是里面还存在一个记录每一行首非零元出现的位置的
	   Const MaxSize = 1000;
	   typedef struct
	   {
		int i;
		int j;
		ElemType e;
	   }Triple;		//元素类型
	   typedef union
	   {
		Triple data[MaxSize + 1];
		int mu;
		int nu;
		int tu;
	   }TSMatrix;	//稀疏矩阵类型

	   求转置的话:要考虑转过了之后要放到指定的位置【按行从小到大排,所以要做一点操作】
	   int FastTransposeSMatrix(TSMatrix M, TSMatrix & T)
	   {
	    T.mu = M.nu;	//转置的行和列 等于 原来的矩阵的 列和行
		T.nu = M.mu;
		T.tu = M.tu;	//非零元个数是相等的
		if (T.tu)
		{
			for (col=1; col<=M.nu; ++col)
			{
				num[col]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值