ElasticSearch(3)------版本控制和数据类型
前言
一般来说,我们使用ElasticSearch是为了减轻数据库的压力,那么大量的并发时,ES会怎么保证数据的一致性呢?在ElasticSearch内部,又是怎么存储数据的呢?
正文
1.版本控制
ElasticSearch采用了乐观锁来保证数据的一致性.也就是说,当用于对Document进行操作时,并不需要对document做加锁和解锁的操作,只需要指定要操作的版本即可.当版本号一致时,ElasticSearch会允许该操作顺利执行,而当版本号存在冲突时,ElasticSearch会提示冲突并抛出异常.
以上是ElasticSearch自己内部实现版本控制的方式.
如果我们使用外部的关系型数据库中的字段来控制版本,那么ES不再是检查_version是否与请求中指定的数值相同,而是检查当前的_version是否比指定的值小.如果请求成功,那么外部的版本号就会被存储到文档的_version字段中.
2.Mapping
mapping的作用有两个:
- 规定字段的数据类型
- 规定字段的相关属性
在我们创建索引和type的时候,es会自动为我们创建Mapping,比如我们创建一个如下的Document:
可以看到,我们在添加了一个文档以后,Es自动帮我们创建了mapping,mapping中对文档的各种数据类型做了规定,具体的数据类型如下:
string类型: 包括text和keyword
- text类型被用来索引长文本,在建立索引前会将这些文本进行分词,转化为词的组合,建立索引.text类型不能用来排序和聚合.
- keyword类型不需要进行分词,可以被用来检索过滤、排序和聚合.keyword字段只能用本身来进行检索.
数字型:long, integer, short, byte, double, float
日期型: date
布尔型:boolean
二进制型:binary
除了以上的数据类型,还有数组类型、地理位置等类型,可以查阅官方文档来了解详细的信息.
除了规定数据类型,mappig也支持各种属性:
“index”:true 是否分词,设置成false,字段将不会被索引
“analyzer”:“ik” 指定分词器,默认分词器为standard analyzer
“ignore_above”:100 超过100个字符的文本,将会被忽略,不被索引
…
在上面我们说过,如果我们直接添加一个文档到ElasticSearch,它会为我们自动创建mapping,我们也可以手动来创建mapping:
给一个索引创建mapping:
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 0
},
"mappings": {
"books": { #代表映射的type是books
"properties": {# 下面是每一个字段的mapping
"title": {
"type": "text"
},
"name": {
"type": "text",
"index": false #设置为false代表不会被索引
},
"publish_date": {
"type": "date",
"index": false
},
"price": {
"type": "double"
},
"number": {
"type": "integer"
}
}
}
}
}
总结
一般来说,我们在添加文档的时候,使用ElasticSearch默认的自动创建mapping即可.