炒股的人性考验:我与朋友的不同选择

炒股的人性考验:我与朋友的不同选择
 
股市的起伏总让人难以平静,尤其是在牛市和熊市交替的阶段。最近,我和朋友在炒股上的经历形成了鲜明对比,也让我深刻体会到投资心态的重要性。
 
朋友在牛市时赚了不少钱,曾让我帮他开发炒股软件。当时他说手头紧张,先付了一半费用,后来却毁约不付款了。我当时挺失望,空欢喜一场。而这次小牛市,大盘涨了50%,不少人赚了120%,他却在下跌行情中满仓操作,结果亏得一塌糊涂。
 
其实,牛市时赚钱后,完全可以先卖掉一部分,或者把利润全部提现,这样就能锁定收益。可他偏偏等到需要用钱时,才发现利润早已被高位下跌吞噬。我自己也有过类似教训,牛市赚了80%没及时卖,后来高位跌下来,18万本金最后只剩下8万。
 
投资最怕没有止损,一旦跌30%、50%,就很难翻身。朋友更是典型,四月隆基绿能底价时他不买,眼睁睁看着5个月涨了70%,然后在高位追涨,结果十几天就亏了20%,一个多月后亏掉了30%。
 
我多次提醒他,大盘不好时不能做长线,短线也只能偶尔搏一下,一个月最多操作一周,防止被大盘暴跌套牢。可他从不听劝,也不学习炒股技术,更不做交易记录,只会梭哈,连自己会编程的本领都不会用来辅助投资,更别说用AI帮他分析了。
 
我现在的心态是既无奈又担忧,看着朋友在错误的道路上越走越远,却无法拉回他。而他的心态则充满了贪婪和侥幸,总想一夜暴富,却不愿意付出努力去学习和规划。
 
投资不是赌博,需要理性和策略。只有不断学习、总结经验,才能在股市中稳健前行。而那些只会跟风、不懂止损、不愿反思的人,最终只会被市场淘汰。

 

(Kriging_NSGA2)克里金模型结合多目标遗传算法求最优因变量及对应的最佳自变量组合研究(Matlab代码实现)内容概要:本文介绍了克里金模型(Kriging)多目标遗传算法NSGA-II相结合的方法,用于求解最优因变量及其对应的最佳自变量组合,并提供了完整的Matlab代码实现。该方法首先利用克里金模型构建高精度的代理模型,逼近复杂的非线性系统响应,减少计算成本;随后结合NSGA-II算法进行多目标优化,搜索帕累托前沿解集,从而获得多个最优折衷方案。文中详细阐述了代理模型构建、算法集成流程及参数设置,适用于工程设计、参数反演等复杂优化问题。此外,文档还展示了该方法在SCI一区论文中的复现应用,体现了其科学性实用性。; 适合人群:具备一定Matlab编程基础,熟悉优化算法和数值建模的研究生、科研人员及工程技术人员,尤其适合从事仿真优化、实验设计、代理模型研究的相关领域工作者。; 使用场景及目标:①解决高计算成本的多目标优化问题,通过代理模型降低仿真次数;②在无法解析求导或函数高度非线性的情况下寻找最优变量组合;③复现SCI高水平论文中的优化方法,提升科研可信度效率;④应用于工程设计、能源系统调度、智能制造等需参数优化的实际场景。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现过程,重点关注克里金模型的构建步骤NSGA-II的集成方式,建议自行调整测试函数或实际案例验证算法性能,并配合YALMIP等工具包扩展优化求解能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

专注编程优化20年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值