自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 Python深度学习框架:用神经网络预测股市,科学or玄学?

它确实能发现一些人眼难以察觉的模式,但股市受到的影响因素太多,从美联储加息到马斯克发推特,从疫情爆发到"大妈进场"...小伙伴们,今天我们不谈K线,不谈MACD,我们来聊聊如何用Python的深度学习框架,让神经网络帮你"算命"——啊不,是预测股市走势!model.compile(optimizer='adam', loss='mse') # 用adam优化器,就像给模型喝红牛。神经网络就像是数字世界的保罗,只不过它不吃贝壳,它"吃"数据!如果你的数据是A股的,那预测结果可能...你懂的。

2025-03-25 20:03:40 1302

原创 Python量化交易【学习计划】:从“魔法学徒”到“量化巫师”的奇幻冒险

记住,市场有风险,投资需谨慎,别把“火锅钱”都亏光了哦 😉。很多小伙伴不知道如何学习量化交易,以下是一个用Python学习量化交易的学习计划,希望能让你在学习过程中既有趣又有收获,就像踏上一场“量化交易的冒险之旅”!• 学会分享:加入一些量化交易的社区,与其他学习者和从业者交流经验,分享自己的心得,你会收获更多。• 用Pandas读取股票数据,计算某只股票的“平均涨幅”,看看它是不是“涨得比火箭还快”🚀。• 保持好奇心:量化交易是一个充满挑战和惊喜的领域,保持好奇心,不断探索新的策略和方法。

2025-03-23 16:20:13 611

原创 高频交易:当速度与智慧在金融市场中“飙车”(策略+算法)

• 幽默点:这就像你在朋友圈看到大家都在抢某款网红产品,你也赶紧下单,结果发现已经卖光了——高频交易者的速度可比你快多了!• 幽默点:这就像你在刷朋友圈时,高频交易者已经在分析全球市场的每一个数据点,连你发的自拍都不放过(开玩笑的)。• 幽默点:如果你的数据不准,就像用模糊的照片找人,高频交易者则是用8K高清影像,连毛孔都能看清。• 幽默点:这就像你在双十一抢购时,高频交易者已经用光速完成了所有订单,连购物车都不用加。• 原理:高频交易者像市场的“中间商”,同时挂出买卖报价,赚取价差(spread)。

2025-03-22 10:05:08 946 1

原创 【好书】股票大作手操盘术:一部浸透鲜血的华尔街生存指南

他办公室的电话线被熔断的金属丝烧得通红,交易员们传递纸条的速度赶不上道琼斯指数坠落的速度。在1929年大崩盘前夜,当所有分析师都在为道琼斯指数的虚假繁荣欢呼时,利弗莫尔注意到美国钢铁日成交量中隐藏着魔鬼的狞笑——某些买单的申报时间呈现出诡异的规律性,就像垂死病人心电图最后的波动。利弗莫尔规定“单笔损失不得超过本金的10%”作为明确的资金管理原则,眼前一定闪回着1900年第一次破产时的情景:20岁的他站在纽约证券交易所门口,看着马车夫用马鞭抽打不肯前行的老马,突然意识到自己就是那匹被贪婪抽打的牲畜。

2025-04-20 21:37:24 447

原创 市场量化:从“规则约束”到“技术博弈”

未来,真正决定胜负的将不再是交易速度,而是对基本面逻辑的深刻洞察与对监管规则的动态适应能力。这种“以算法监管算法”的模式,正在倒逼国际机构重构中国战略——某华尔街巨头已暂停其亚洲高频交易团队,转而研发符合中国监管语境的“特供策略”。这种技术代差优势,可能重塑全球量化资本的流动版图——毕竟,在既能管住镰刀、又不误伤韭菜的监管生态里,真正的聪明钱知道该在哪里扎根。• 撤单行为的终结审判:深交所数据显示,模拟测试中98%的虚假报单被“鹰眼系统”在0.3秒内识别,行业撤单率从40%压缩至15%。

2025-04-07 21:06:48 629

原创 与代码共舞:五本量化经典助你穿越市场迷雾

在这个用K线写诗、拿波动率作曲的时代,每位投资者都需要在感性的市场心跳中植入理性的芯片。以下五本著作恰似五把密钥,助你打开量化交易世界的多重维度。1.《主动投资组合管理》——资产配置的几何美学• 精要洞察:用严谨的数学框架重构投资艺术,将抽象的“战胜市场”转化为具象的α狩猎方程式,犹如为混沌市场装上经纬仪。• 独特价值:开创性提出“信息率”评估体系,让策略优化不再是玄学占卜,而成为可量化的精密实验,堪称组合管理的《九章算术》。【实战案例】某私募基金在2018年市场震荡中,运用书中“信息率最大化”原则重构组

2025-03-31 22:30:26 499

原创 量化交易进化史:人类与机器的 K 线双人舞?

text=%E9%87%8F%E5%8C%96%E4%BA%A4%E6%98%93%E8%BF%9B%E5%8C%96%E6%97%B6%E9%97%B4%E8%BD%BB%E9%9F%B3%E6%A8%82%E5%9B%BE)程序员吐槽墙:某量化公司因算法将"特朗普推特情绪"误判为市场信号,单日亏损 2.3 亿,程序员背锅后在工位贴满"算法有风险,秃头需谨慎"。• 1967 年,麻省理工"轮盘小组"因公式预测太准,被拉斯维加斯赌场联合封杀,转而将算法卖给华尔街,开启"宽客"(Quant)原罪。

2025-03-30 12:53:11 959

原创 量化交易【十大经典案例】解析:当数字与金钱共舞时~

2014年,迈克尔·刘易斯的《Flash Boys》揭露了高频交易的"军备竞赛"——HFT公司通过"闪电订单"和"延迟套利"在毫秒级抢先交易,赚取微小但高频的利润。1994-1997年,LTCM年化回报超40%,但1998年俄罗斯债务违约引发全球市场恐慌,利差不仅没有收敛,反而疯狂扩大,最终LTCM在150天内亏损46亿美元,被迫由美联储组织救助。量化趋势跟踪者不关心"为什么",只关心"怎么样"。此前,许多量化基金采用"做空VIX"策略,因为长期来看,市场恐慌是短暂的,VIX均值回归特性明显。

2025-03-29 19:34:58 2035

原创 量化交易的十大灵魂拷问:你get了几个?

• 稳健性验证:别光看夏普比率(Sharpe Ratio),试试样本外测试(Walk-Forward)、蒙特卡洛模拟,甚至让策略经历2008年金融危机级别的市场震荡,看看它会不会当场去世。• 过拟合(Overfitting):如果你的策略在历史数据上完美得像开了天眼,那大概率是废了。记住,市场不按历史剧本走,你的模型也别太“自信”。但小心,交易所的数据可能延迟、丢包,甚至被“狙击”(比如某些做市商专吃你的订单)• 样本外(OOS)表现差:模型在训练集上“学得太好”,实盘直接崩盘。• 动态仓位:别一把梭。

2025-03-28 12:17:23 299

原创 量化交易武林秘籍:从“韭菜“到“收割机“的【经典招式】全解析

则是量化界的"凌波微步",专门捕捉"强者恒强"的股票。堪称量化界的"情侣调解员",专门找那些"感情好"的股票对儿(比如中石油和中石化)。这招的精髓在于——你不是在赌单只股票涨跌,而是在赌两者关系恢复正常,堪称对冲基金界的"和事佬"。各位小伙伴们,今天咱们就来聊聊量化交易这个神秘又迷人的领域——它就像是金融界的"降龙十八掌",掌握了正确招式,你也能从任人宰割的"韭菜"进化成游刃有余的"收割机"。各位少侠,介绍了这么多"招式",最后提醒一句——真正的武林高手不是死记硬背招式,而是理解市场本质后"无招胜有招"。

2025-03-27 12:27:42 2430

转载 【宏观量化】股市趋势与拐点如何看?

周期的趋势与拐点无法精确确定,但可以通过经验判断和量化分析,在一个模糊的但可确定的底部区域买入,在一个模糊的但可确定的顶部区域卖出,获取超额收益。因此,股市往往在衰退中后期见底。过热阶段,经济增长继续加速,受产能制约,企业利润增长开始放缓,通货膨胀率开始上升,央行为防止经济过热,抑制通货膨胀,往往会加息。复苏阶段,经济加速增长,但由于闲置产能尚未完全用完,价格和市场利率仍处于相对低位,无通胀压力,企业利润大幅回升,进一步降息的可能性很小,预期空间也不大,所以债券市场很可能在这个阶段的中后期见顶。

2025-03-26 13:11:06 72

原创 用Python实现去极值的方法解析:数据极值的“克星”(MAD+3sigma)

假设我们有一组数据`[1, 2, 3, 4, 5, 100, 200, 300]`,其中100、200、300是明显的极值。接下来,我们让每个人都和这位“中间朋友”比身高,算出他们身高的差值,再取绝对值(毕竟身高差是正数负数都无所谓)。总之,绝对值差中位数法就像数据世界里的“极值探测器”,用它处理数据,能让我们更放心地进行后续分析,避免被极值带偏结果。假设输入数据是上面的身高数据,运行代码后,输出会是去除极值后的正常身高范围数据。比如上面的例子,绝对偏差是(1,1,0,0,2,4,7)。

2025-03-24 13:36:21 397

原创 0基础学习高频交易:从小白到高手的“速成”指南(书籍与论坛推荐)

• 特色:这是一本轻松易懂的金融杂志,内容涵盖市场动态、投资策略和公司分析,适合初学者培养金融敏感度。理论和编程都学得差不多了,是时候开始模拟交易了,不然你永远不知道自己的策略在实战中会不会“翻车”。金融市场是不断变化的,高频交易领域更是日新月异,所以你得不断学习,不然就会被淘汰。• 现实:高频交易更像是一场马拉松,需要长期的学习、实践和优化,才能跑赢市场。• 特色:通过生动的案例,揭示极端事件对市场的影响,帮助你理解市场的不确定性。• 特色:提供丰富的历史数据和回测工具,社区活跃,适合初学者学习和交流。

2025-03-22 15:55:22 508

原创 量化交易vs高频交易:策略难度与工具使用大比拼(从“捡硬币”到“抢红包”)

量化交易的工具就像瑞士军刀,功能多且实用。你需要用历史数据、统计模型和概率论来设计策略,比如“如果A股票涨了,B股票可能会跌,那我就买B卖A”。量化交易和高频交易的区别,就像“开拖拉机”和“开战斗机”、“捡硬币”和“抢红包”、“踩香蕉皮”和“躲陨石”。你可以用Python写个脚本,拉点历史数据,跑个回测,优化一下参数,然后就可以上路了。现在,让我们用轻松幽默的方式来详细分析量化交易和高频交易的区别,从策略难度、实现方法和工具使用等多个方面展开。就像在地上捡硬币,虽然每次捡的不多,但积少成多,也能赚不少。

2025-03-22 12:59:23 392

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除