自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 吃瓜学习笔记 - 支持向量机

落在带子上的样本不计算损失(类比线性回归在线上的点预测误差为 0),不在带子上的则以偏离带 子的距离作为损失(类比线性回归的均方误差),然后以最小化损失的方式迫使间隔带从样本最密集的地 方穿过,进而达到拟合训练样本的目的。由于约束条件 μ ⪰ 0 是凸集,且根据对偶函数的性质(a)可知 Γ(μ, λ) 恒为凹函数,其加个负号即为凸函数,所以无论主问题是否为凸优化问题, 对偶问题恒为凸优化问题。由此可以看出,当主问题较难求解时,如 果强对偶性成立,则可以通过求解对偶问题来间接求解主问题。

2023-12-27 00:27:39 555

原创 吃瓜学习笔记 - 神经网络

神经元接收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将于神经元的阈值(下图的θ)进行比较,然后通过“激活函数”(下图的f(·),模拟“抑制"或者“激活”)处理以产生神经元的输出。由于感知机这种单个神经元的分类能力有限,只能分类线性可分的数据集,对于线性不可分的数据集则无能为力,比如“异或”问题。如果没有误分类,损失函数为0,而且误分类点越少,误分类点离超平面越近,损失函数值就越小。因此,神经网络既能做回归,也能做分类,而且不需要复杂的特征工程。

2023-12-25 00:17:11 944

原创 吃瓜学习笔记 - 决策树

若样本x在划分属性a上的取值已知,则将x划入与其取值对应的子结点,且样本权值在子结点中保持为w(x)。若样本x在划分属性a上的取值未知,则将x同时划入所有子结点,且样本权重在于属性值a(v)对应的子结点中调整为。从训练集生成一棵完整的决策树,然后自底向上对非叶结点进行考察,若将该结点对应的子树替换为叶节点能带来决策树泛化性能的提升,则将该子树替换为叶节点。是在决策树生成过程中,对每个节点在划分前先进行评估,若当前节点的划分不能顾戴路决策树泛化性能的提升,则停止划分并将当前节点标记为叶节点。

2023-12-21 23:27:37 1761

原创 吃瓜学习笔记 - 线性模型

梯度:一元函数的一阶导叫导数,多元函数的一阶导叫梯度。(求出各个分量Xi的偏导数,然后组成向量)(中心极限定理:若一个随机变量是很多个独立的随机变量之和,那这个随机变量就符合正态分布),本质上是一个多元函数求最值的问题,更具体点是凸函数求最值的问题。b. 用凸函数求最值的思路求w和b。的海塞矩阵在D上是半正定的,则。西瓜书:周志华老师的《机器学习》note: 这里的x是已知量。海塞矩阵:多元函数的二阶导数。给定由d个属性描述的示例。是全局解的充分必要条件是。是关于w和b的凸函数。的海塞矩阵是半正定的。

2023-12-17 20:03:29 899

原创 吃瓜学习笔记 - 绪论 & 模型评估与选择

数据量越大,模型效果越好;对特征数值化越合理,特征收集越全越细致,模型效果越好。范围:人工智能 >机器学习>深度学习(指神经网络的那一类学习算法)5. 数据决定模型效果的上限,而算法是让模型无限逼近上线。研究从数据中学习出其潜在规律的算法的一门学科。1.2. 为什么要学习机器学习?1.3. 怎么学习机器学习。不同的ML算法有不同的偏好。1.1 什么是机器学习?数据质量的重要性>算法。

2023-12-11 23:08:28 1197

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除