文章目录
SQOOP(1.4.6)
1、sqoop架构
sqoop架构非常简单,是hadoop生态系统的架构最简单的框架。
sqoop1由client端直接接入hadoop,任务通过解析生成对应的maprecue执行
2、SQOOP安装
1)、上传并解压
tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /usr/local/soft/
2)、修改文件夹名字
mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha/ sqoop-1.4.6
3)、修改配置文件
# 切换到sqoop配置文件目录
cd /usr/local/soft/sqoop-1.4.6/conf
# 复制配置文件并重命名
cp sqoop-env-template.sh sqoop-env.sh
# vim sqoop-env.sh 编辑配置文件,并加入以下内容
export HADOOP_COMMON_HOME=/usr/local/soft/hadoop-2.7.6
export HADOOP_MAPRED_HOME=/usr/local/soft/hadoop-2.7.6/share/hadoop/mapreduce
export HBASE_HOME=/usr/local/soft/hbase-1.4.6
export HIVE_HOME=/usr/local/soft/hive-1.2.1
export ZOOCFGDIR=/usr/local/soft/zookeeper-3.4.6/conf
export ZOOKEEPER_HOME=//usr/local/soft/zookeeper-3.4.6
# 切换到bin目录
cd /usr/local/soft/sqoop-1.4.6/bin
# vim configure-sqoop 修改配置文件,注释掉没用的内容(就是为了去掉警告信息)
4)、修改环境变量
vim /etc/profile
# 将sqoop的目录加入环境变量
5)、添加MySQL连接驱动
# 从HIVE中复制MySQL连接驱动到$SQOOP_HOME/lib
cp /usr/local/soft/hive-1.2.1/lib/mysql-connector-java-5.1.49.jar /usr/local/soft/sqoop-1.4.6/lib/
6)、测试
# 打印sqoop版本
sqoop version
# 测试MySQL连通性
sqoop list-databases -connect jdbc:mysql://master:3306/ -username root -password 123456
3、准备MySQL数据
1)、登录MySQL数据库
mysql -u root -p123456;
2)、创建student数据库
create database student;
3)、切换数据库并导入数据
# mysql shell中执行
use student;
source /root/student.sql;
source /root/score.sql;
4)、另外一种导入数据的方式
# linux shell中执行
mysql -u root -p123456 student</root/student.sql
mysql -u root -p123456 student</root/score.sql
5)、导出MySQL数据库
mysqldump -u root -p123456 数据库名>任意一个文件名.sql
4、import
从传统的关系型数据库导入HDFS、HIVE、HBASE…
1)、sqoop_mysql_hdfs
①编写脚本,保存为sqoop_mysql_hdfs.conf
import
--connect
jdbc:mysql://master:3306/student
--username
root
--password
123456
--table
student
--m
2
--split-by
age
--target-dir
/sqoop/data/student
--fields-terminated-by
','
②、执行脚本
sqoop --options-file sqoop_mysql_hdfs.conf
③、注意事项:
1、–m 表示指定生成多少个Map任务,不是越多越好,因为MySQL Server的承载能力有限
2、当指定的Map任务数>1,那么需要结合--split-by
参数,指定分割键,以确定每个map任务到底读取哪一部分数据,最好指定数值型的列
3、如果指定的分割键数据分布不均,可能导致数据倾斜问题
4、编写脚本的时候,注意:例如:--username
参数,参数值不能和参数名同一行
--username root // 错误的
// 应该分成两行
--username
root
5、运行的时候会报错InterruptedException,hadoop2.7.6自带的问题,忽略即可
21/01/25 14:32:32 WARN hdfs.DFSClient: Caught exception
java.lang.InterruptedException
at java.lang.Object.wait(Native Method)
at java.lang.Thread.join(Thread.java:1252)
at java.lang.Thread.join(Thread.java:1326)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.closeResponder(DFSOutputStream.java:716)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.endBlock(DFSOutputStream.java:476)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:652)
6、实际上sqoop在读取mysql数据的时候,用的是JDBC的方式,所以当数据量大的时候,效率不是很高
7、sqoop底层通过MapReduce完成数据导入导出,只需要Map任务,不许需要Reduce任务
2)、sqoop_mysql_hive
①、编写脚本,并保存为sqoop_mysql_hive.conf文件
import
--connect
jdbc:mysql://master:3306/student
--username
root
--password
123456
--table
score
--fields-terminated-by
"\t"
--lines-terminated-by
"\n"
--m
2
--split-by
student_id
--hive-import
--hive-overwrite
--create-hive-table
--hive-database
student
--hive-table
score
②、执行脚本
sqoop --options-file sqoop_mysql_hive.conf
3)、–direct
加上这个参数,可以在导出MySQL数据的时候,使用MySQL提供的导出工具mysqldump,加快导出速度,提高效率
①、分发mysqldump
需要将master上的/usr/bin/mysqldump分发至 node1、node2的/usr/bin目录下
scp /usr/bin/mysqldump node1:/usr/bin/
scp /usr/bin/mysqldump node2:/usr/bin/
②、编写脚本,并保存为sqoop_mysql_direct_hive.conf文件
import
--connect
jdbc:mysql://master:3306/student
--username
root
--password
123456
--table
score
--fields-terminated-by
"\t"
--lines-terminated-by
"\n"
--m
2
--split-by
student_id
--hive-import
--hive-overwrite
--hive-database
student
--hive-table
score
--direct
③、执行脚本
sqoop --options-file sqoop_mysql_direct_hive.conf
4)、-e参数的使用
①、编写脚本,并保存为sqoop_mysql_-e_hive.conf文件
import
--connect
jdbc:mysql://master:3306/student
--username
root
--password
123456
--fields-terminated-by
"\t"
--lines-terminated-by
"\n"
--m
2
--split-by
student_id
--e
"select * from score where student_id=1500100011 and $CONDITIONS"
--target-dir
/testQ
--hive-import
--hive-overwrite
--create-hive-table
--hive-database
student
--hive-table
score2
②、执行脚本
sqoop --options-file sqoop_mysql_-e_hive.conf
5)、sqoop_mysql_hbase
①、编写脚本,并保存为sqoop_mysql_hbase.conf
import
--connect
jdbc:mysql://master:3306/student
--username
root
--password
123456
--table
student
--hbase-table
student
--hbase-row-key
id
--m
1
--column-family
info
②、在HBase中创建student表
create 'student','info'
③、执行脚本
sqoop --options-file sqoop_mysql_hbase.conf
5、export
1)、sqoop_hdfs_mysql
①、编写脚本,并保存为sqoop_hdfs_mysql.conf
export
--connect
jdbc:mysql://master:3306/student?useUnicode=true&characterEncoding=UTF-8
--username
root
--password
123456
-m
1
--columns
id,name,age,gender,clazz
--export-dir
/sqoop/data/student/
--fields-terminated-by
','
--table
student
注意:先清空MySQL student表中的数据,不然会造成主键冲突
②、执行脚本
sqoop --options-file sqoop_hdfs_mysql.conf
6、–check-column
用来指定一些列,这些列在增量导入时用来检查数据是否作为增量数据进行导入,和关系型数据库中的自增字段及时间戳类似.
注意:这些被指定的列的类型不能使任意字符类型,如char、varchar等类型都是不可以的,同时–check-column可以去指定多个列
–incremental
用来指定增量导入的模式,两种模式分别为Append和Lastmodified
–last-value
指定上一次导入中检查列指定字段最大值
1)、mysql建表语句:
create table student
(
id int(10) not null AUTO_INCREMENT,
name char(5),
age int,
gender char(2),
clazz char(4),
primary key (id),
last_mod timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
) DEFAULT CHARSET=utf8;
2)、指定字段的取值范围,增量导数据
直接在命令行执行
sqoop import \
--connect jdbc:mysql://master:3306/student?characterEncoding=UTF-8 \
--username root \
--driver com.mysql.jdbc.Driver \
--password 123456 \
--table student \
--target-dir /sqoop/data/student \
--split-by id \
--m 2 \
--fields-terminated-by ',' \
--incremental append\
--check-column id \
--last-value 1500100996
3)、追加数据
直接在命令行执行
sqoop import \
--connect jdbc:mysql://master:3306/student?characterEncoding=UTF-8 \
--username root \
--driver com.mysql.jdbc.Driver \
--password 123456 \
--target-dir /sqoop/data/student \
--table student \
--fields-terminated-by ',' \
--check-column last_mod \
--incremental lastmodified \
--last-value "2021-01-25 19:30:36" \
--m 1 \
--append
4)、对3)去重
直接在命令行执行
sqoop import \
--connect jdbc:mysql://master:3306/student?characterEncoding=UTF-8 \
--username root \
--driver com.mysql.jdbc.Driver \
--password 123456 \
--target-dir /sqoop/data/student \
--table student \
--fields-terminated-by ',' \
--check-column last_mod \
--incremental lastmodified \
--last-value "2021-01-25 19:30:36" \
--m 1 \
--merge-key id