package com.kmedoids;
import java.util.ArrayList;
public class Cluster {
private String clusterName; // 类簇名
private Medoid medoid; // 类簇的质点
private ArrayList<DataPoint> dataPoints; // 类簇中各样本点
public Cluster(String clusterName) {
this.clusterName = clusterName;
this.medoid = null; // will be set by calling setCentroid()
dataPoints = new ArrayList<DataPoint>();
}
public void setMedoid(Medoid c) {
medoid = c;
}
public Medoid getMedoid() {
return medoid;
}
public void addDataPoint(DataPoint dp) { // called from CAInstance
dp.setCluster(this);// 标注该类簇属于某点,计算欧式距离
this.dataPoints.add(dp);
}
public void removeDataPoint(DataPoint dp) {
this.dataPoints.remove(dp);
}
public int getNumDataPoints() {
return this.dataPoints.size();
}
public DataPoint getDataPoint(int pos) {
return (DataPoint) this.dataPoints.get(pos);
}
public String getName() {
return this.clusterName;
}
public ArrayList<DataPoint> getDataPoints() {
return this.dataPoints;
}
}
------------------------------------
package com.kmedoids;
import java.util.ArrayList;
public class DataPoint {
private double dimension[]; //样本点的维度
private String pointName; //样本点名字
private Cluster cluster; //类簇
private double euDt;//样本点到质点的距离
public DataPoint(double dimension[], String pointName) {
this.dimension = dimension;
this.pointName = pointName;
this.cluster = null;
}
public void setCluster(Cluster cluster) {
this.cluster = cluster;
}
public double calEuclideanDistanceSum() {
double sum=0.0;
Cluster cluster=this.getCluster();
ArrayList<DataPoint> dataPoints=cluster.getDataPoints();
for(int i=0;i<dataPoints.size();i++){
double[] dims=dataPoints.get(i).getDimensioin();
for(int j=0;j<dims.length;j++){
double temp=Math.pow((dims[j]-this.dimension[j]),2);
sum=sum+temp;
}
}
return Math.sqrt(sum);
}
public double testEuclideanDistance(Medoid c) {
double sum=0.0;
double[] cDim=c.getDimensioin();
for(int i=0;i<dimension.length;i++){
double temp=Math.pow((dimension[i]-cDim[i]),2);
sum=sum+temp;
}
return Math.sqrt(sum);
}
public double[] getDimensioin() {
return this.dimension;
}
public Cluster getCluster() {
return this.cluster;
}
public double getCurrentEuDt() {
return this.euDt;
}
public String getPointName() {
return this.pointName;
}
}
-------------------------------
package com.kmedoids;
import java.util.ArrayList;
public class Medoid{
private double dimension[]; // 质点的维度
private Cluster cluster; //所属类簇
private double etdDisSum;//Medoid到本类簇中所有的欧式距离之和
public Medoid(double dimension[]) {
this.dimension = dimension;
}
public void setCluster(Cluster c) {
this.cluster = c;
}
public double[] getDimensioin() {
return this.dimension;
}
public Cluster getCluster() {
return this.cluster;
}
public void calcMedoid() {// 取代价最小的点
calcEtdDisSum();
double minEucDisSum = this.etdDisSum;
ArrayList<DataPoint> dps = this.cluster.getDataPoints();
for (int i = 0; i < dps.size(); i++) {
double tempeucDisSum = dps.get(i).calEuclideanDistanceSum();
if (tempeucDisSum < minEucDisSum) {
dimension = dps.get(i).getDimensioin();
minEucDisSum=tempeucDisSum;
}
}
}
// 计算该Medoid到同类簇所有样本点的欧斯距离和
private void calcEtdDisSum() {
double sum=0.0;
Cluster cluster=this.getCluster();
ArrayList<DataPoint> dataPoints=cluster.getDataPoints();
for(int i=0;i<dataPoints.size();i++){
double[] dims=dataPoints.get(i).getDimensioin();
for(int j=0;j<dims.length;j++){
double temp=Math.abs(dims[j]-this.dimension[j]);
sum=sum+temp;
}
}
etdDisSum= sum;
}
}
--------------------------
package com.kmedoids;
import java.util.ArrayList;
public class ClusterAnalysis {
private Cluster[] clusters;// 所有类簇
private int miter;// 迭代次数
private ArrayList<DataPoint> dataPoints = new ArrayList<DataPoint>();// 所有样本点
private int dimNum;//维度
public ClusterAnalysis(int k, int iter, ArrayList<DataPoint> dataPoints,int dimNum) {
clusters = new Cluster[k];// 类簇种类数
for (int i = 0; i < k; i++) {
clusters[i] = new Cluster("Cluster:" + i);
}
this.miter = iter;
this.dataPoints = dataPoints;
this.dimNum=dimNum;
}
public int getIterations() {
return miter;
}
public ArrayList<DataPoint>[] getClusterOutput() {
ArrayList<DataPoint> v[] = new ArrayList[clusters.length];
for (int i = 0; i < clusters.length; i++) {
v[i] = clusters[i].getDataPoints();
}
return v;
}
public void startAnalysis(double[][] medoids) {
setInitialMedoids(medoids);
double[][] newMedoids=medoids;
double[][] oldMedoids=new double[medoids.length][this.dimNum];
while(!isEqual(oldMedoids,newMedoids)){
for(int m = 0; m < clusters.length; m++){//每次迭代开始情况各类簇的点
clusters[m].getDataPoints().clear();
}
for (int j = 0; j < dataPoints.size(); j++) {
int clusterIndex=0;
double minDistance=Double.MAX_VALUE;
for (int k = 0; k < clusters.length; k++) {//判断样本点属于哪个类簇
double eucDistance=dataPoints.get(j).testEuclideanDistance(clusters[k].getMedoid());
if(eucDistance<minDistance){
minDistance=eucDistance;
clusterIndex=k;
}
}
//将该样本点添加到该类簇
clusters[clusterIndex].addDataPoint(dataPoints.get(j));
}
for(int m = 0; m < clusters.length; m++){
clusters[m].getMedoid().calcMedoid();//重新计算各类簇的质点
}
for(int i=0;i<medoids.length;i++){
for(int j=0;j<this.dimNum;j++){
oldMedoids[i][j]=newMedoids[i][j];
}
}
for(int n=0;n<clusters.length;n++){
newMedoids[n]=clusters[n].getMedoid().getDimensioin();
}
this.miter++;
}
}
private void setInitialMedoids(double[][] medoids) {
for (int n = 0; n < clusters.length; n++) {
Medoid medoid = new Medoid(medoids[n]);
clusters[n].setMedoid(medoid);
medoid.setCluster(clusters[n]);
}
}
private boolean isEqual(double[][] oldMedoids,double[][] newMedoids){
boolean flag=false;
for(int i=0;i<oldMedoids.length;i++){
for(int j=0;j<oldMedoids[i].length;j++){
if(oldMedoids[i][j]!=newMedoids[i][j]){
return flag;
}
}
}
flag=true;
return flag;
}
}
--------------------------------------------
package com.kmedoids;
import java.util.ArrayList;
import java.util.Iterator;
public class TestMain {
public static void main (String args[]){
ArrayList<DataPoint> dataPoints = new ArrayList<DataPoint>();
double[] a={2,3};
double[] b={2,4};
double[] c={1,4};
double[] d={1,3};
double[] e={2,2};
double[] f={3,2};
double[] g={8,7};
double[] h={8,6};
double[] i={7,7};
double[] j={7,6};
double[] k={8,5};
double[] l={100,2};//孤立点
double[] m={8,20};
double[] n={8,19};
double[] o={7,18};
double[] p={7,17};
double[] q={7,20};
dataPoints.add(new DataPoint(a,"a"));
dataPoints.add(new DataPoint(b,"b"));
dataPoints.add(new DataPoint(c,"c"));
dataPoints.add(new DataPoint(d,"d"));
dataPoints.add(new DataPoint(e,"e"));
dataPoints.add(new DataPoint(f,"f"));
dataPoints.add(new DataPoint(g,"g"));
dataPoints.add(new DataPoint(h,"h"));
dataPoints.add(new DataPoint(i,"i"));
dataPoints.add(new DataPoint(j,"j"));
dataPoints.add(new DataPoint(k,"k"));
dataPoints.add(new DataPoint(l,"l"));
dataPoints.add(new DataPoint(m,"m"));
dataPoints.add(new DataPoint(n,"n"));
dataPoints.add(new DataPoint(o,"o"));
dataPoints.add(new DataPoint(p,"p"));
dataPoints.add(new DataPoint(q,"q"));
ClusterAnalysis ca=new ClusterAnalysis(3,0,dataPoints,2);
double[][] cen={{8,7},{8,6},{7,7}};
ca.startAnalysis(cen);
ArrayList<DataPoint>[] v = ca.getClusterOutput();
for (int ii=0; ii<v.length; ii++){
ArrayList tempV = v[ii];
System.out.println("-----------Cluster"+ii+"---------");
Iterator iter = tempV.iterator();
while(iter.hasNext()){
DataPoint dpTemp = (DataPoint)iter.next();
System.out.println(dpTemp.getPointName());
}
}
}
}
K中心点算法(K-medoids) java实现
最新推荐文章于 2021-11-30 21:13:23 发布