今天无意间看到了一道数学题,据说google面试出过这道题.
(只看长度)1米长的路面,每次只下1滴雨,覆盖0.01米的路面,落点均匀分布,问路面被完全覆盖所需要的雨滴数目的数学期望。
这道题和“优惠券收集”问题极为相似:
餐馆每天随机发放十二生肖优惠券中的其中一张,问能收集齐12中不同的优惠券所需要的天数的数学期望。
为什么说是极为相似的呢? 我们把路面看做100张不同类型的优惠券,问题所求的就是集齐100张不同的优惠券所需天数的数学期望。
那么我们来解决一下:
假设Xi 是第i天 收集到 第 i 种不同的优惠券的概率,那么,第一天拿到第一种不重复的优惠券的概率是 1;第二天拿到第二种不重复的优惠券的概率是 11/12;第三天拿到第三种不重复的优惠券的概率是10/12……以此类推,第十二天拿到第12中不重复的优惠券的概率是1/12.
也就是说,拿到第一种不重复的优惠券所需要的天数是1,拿到第二种不重复的优惠券放所需的天数是12/11……以此类推,拿到第12种不重复的优惠券所需要的天数是12.
所以,根据总的数学期望==各项数学期望的和,我们可以得到,n张不同类型的优惠券,收集齐所需要的天数的数学期望是:
n * (1/(n-1) + 1/(n-2)+…… + 1/(n) = n*logn (因为 1/n 的级数和是logn)
诸君工作日愉快啦~