优惠券收集问题

今天无意间看到了一道数学题,据说google面试出过这道题.

(只看长度)1米长的路面,每次只下1滴雨,覆盖0.01米的路面,落点均匀分布,问路面被完全覆盖所需要的雨滴数目的数学期望。

这道题和“优惠券收集”问题极为相似:

餐馆每天随机发放十二生肖优惠券中的其中一张,问能收集齐12中不同的优惠券所需要的天数的数学期望。


为什么说是极为相似的呢? 我们把路面看做100张不同类型的优惠券,问题所求的就是集齐100张不同的优惠券所需天数的数学期望。

那么我们来解决一下:

假设Xi 是第i天 收集到 第 i 种不同的优惠券的概率,那么,第一天拿到第一种不重复的优惠券的概率是 1;第二天拿到第二种不重复的优惠券的概率是 11/12;第三天拿到第三种不重复的优惠券的概率是10/12……以此类推,第十二天拿到第12中不重复的优惠券的概率是1/12.

 也就是说,拿到第一种不重复的优惠券所需要的天数是1,拿到第二种不重复的优惠券放所需的天数是12/11……以此类推,拿到第12种不重复的优惠券所需要的天数是12.


所以,根据总的数学期望==各项数学期望的和,我们可以得到,n张不同类型的优惠券,收集齐所需要的天数的数学期望是:

n * (1/(n-1) + 1/(n-2)+…… + 1/(n)  =  n*logn (因为 1/n 的级数和是logn)


诸君工作日愉快啦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值