n & (n - 1)的用途
最近在刷位运算的算法题的时候,发现了不少的题都可以用到 n & (n - 1)这个来计算结果。分享一下。
1.特点:
首先,以 n = 6 为例,我们进行计算,
6 & (6 - 1) = 6 & 5 = 4
二进制表示为:
(110) & (101) = (100)
可以看到 十进制中最后的结果从6变为4,好像没啥有用的信息。那么我们再看看二进制中,可以发现从(110)变为(100),这时我们可以看到最低位的1变为了0.
以上,我们可以得出结论 n & (n - 1) 的结果会导致n的最低位的1变为0.
2.作用:
那么,这个规律有什么用呢?
2.1. 位1的个数
现在我们可以考虑,如果我们需要判断一个二进制数中位1的个数,可否用上面的算式。
其实,我们不断让当前的 n 与 n - 1做与运算,直到 n 变为 0即可。因为每次运算会使得 n 的最低位的 1 被翻转,因此运算次数就等于 n 的二进制位中 1 的个数。
代码如下:
public int hammingWeight(int n) {
int count = 0;
while(n != 0){
n &= n - 1;
count++;
}
return count;
}
2.2. 数是否为2的幂
又或者我们可以考虑,如果我们需要判断一个数是否为2的幂,可否用上面的算式。
首先2的幂数 有一个特点就是在二进制表示形式中,只有一位为1,例如 4 = (100), 8 = (1000)
那么2的幂 - 1 在二进制表示形式中就是全部位都为1的数,且比2的幂 少一位,例如 3 = (11), 7 = (111)
那么两者相与,即 (2的幂 & (2的幂 - 1)) = 0,例如 4 & 3 = 0, 8 & 7 = 0
结论:如果一个数n,使得n & (n - 1) = 0,那么n为2的幂。
代码如下:
public boolean isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}