n & (n - 1)的用途

n & (n - 1)的用途

最近在刷位运算的算法题的时候,发现了不少的题都可以用到 n & (n - 1)这个来计算结果。分享一下。

1.特点:

首先,以 n = 6 为例,我们进行计算,

6 & (6 - 1) = 6 & 5 = 4

二进制表示为:

(110) & (101) = (100)

可以看到 十进制中最后的结果从6变为4,好像没啥有用的信息。那么我们再看看二进制中,可以发现从(110)变为(100),这时我们可以看到最低位的1变为了0.

以上,我们可以得出结论 n & (n - 1) 的结果会导致n的最低位的1变为0.

2.作用:

那么,这个规律有什么用呢?

2.1. 位1的个数

现在我们可以考虑,如果我们需要判断一个二进制数中位1的个数,可否用上面的算式。

其实,我们不断让当前的 n 与 n - 1做与运算,直到 n 变为 0即可。因为每次运算会使得 n 的最低位的 1 被翻转,因此运算次数就等于 n 的二进制位中 1 的个数。

代码如下:

public int hammingWeight(int n) {
        int count = 0;

        while(n != 0){
            n &= n - 1;
            count++;
        }

        return count;
}
2.2. 数是否为2的幂

又或者我们可以考虑,如果我们需要判断一个数是否为2的幂,可否用上面的算式。

首先2的幂数 有一个特点就是在二进制表示形式中,只有一位为1,例如 4 = (100), 8 = (1000)

那么2的幂 - 1 在二进制表示形式中就是全部位都为1的数,且比2的幂 少一位,例如 3 = (11), 7 = (111)

那么两者相与,即 (2的幂 & (2的幂 - 1)) = 0,例如 4 & 3 = 0, 8 & 7 = 0

结论:如果一个数n,使得n & (n - 1) = 0,那么n为2的幂。

代码如下:

public boolean isPowerOfTwo(int n) {
        return n > 0 && (n & (n - 1)) == 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值