自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

一杯水果茶!足矣~

(用过的昵称有:xyt_21,小鱼爱吃喵,想不出昵称呀,小喵要摸鱼)

  • 博客(203)
  • 收藏
  • 关注

原创 【卷积神经网络】卷积层、池化层、全连接层

卷积神经网络通过三维输入数据(h×w×c)直接提取特征,相比传统神经网络能更好地保留空间信息。其核心架构包含卷积层、池化层和全连接层,其中只有带权重参数的层(如卷积层和全连接层)计入网络深度。卷积层通过滑动窗口、步长调节、边缘填充和多核设计实现多层次特征提取,小卷积核堆叠既能扩大感受野又能减少参数量。感受野随网络深度递推增长,计算公式为RF_new = RF_prev + (k-1)×S_prev,这种层级结构使浅层提取局部特征,深层捕获全局特征。

2025-11-29 23:33:06 1884 10

原创 【机器学习】无监督学习 —— K-Means 聚类、DBSCAN 聚类

本文介绍了两种常用聚类算法,K-Means和DBSCAN。K-Means通过最小化簇内平方误差将数据划分为k个球状簇,需预先指定簇数,常用肘部法则和轮廓系数评估效果。DBSCAN基于密度,能发现任意形状簇并识别噪声点,核心参数为邻域半径eps和最小点数MinPts,通过连接核心点形成簇。

2025-10-08 21:43:10 2024 2

原创 【Python LeetCode 专题】热题 100,重在思路

包含 普通数组、矩阵、链表、子串、栈、堆、哈希表、双指针、滑动窗口、链表、回溯、贪心、图论

2025-07-17 14:38:21 790 1

原创 扩散模型(Diffusion Model)—— 从需求的角度理解 DDPM

从需求的角度理解 DDPM

2025-04-16 10:11:46 1690

原创 LaTeX 常见符号

Latex 是一种用于的语言,它可以用特殊的命令来表示数学公式、符号、图形等。具有高效、灵活、易扩展等特点,在计算机科学的各个领域都有广泛的应用。

2023-12-19 09:49:15 36328 2

原创 【神经网络】模型训练中的相关概念:Epoch,Batch,Batch size,Iteration

神经网络模型训练中的相关概念:Epoch,Batch,Batch size,Iteration

2023-12-06 11:31:40 23571 3

原创 【卷积神经网络】卷积的理解,卷积与通道的关系

卷积核通道个数 = 输入通道个数卷积核的内核个数 = 卷积核通道个数,一个通道对应一个内核输出通道个数 = 卷积核个数

2023-11-30 11:29:46 3641 5

原创 实验一 8255并行接口实验

8255 并行接口实验及其扩展实验,代码及详解

2023-02-27 11:58:54 26421 15

原创 2025 年,论文与求职夹击下的一年:我与博客共同成长

2025 年,我同时面对毕业论文与求职的双重压力。在持续学习与创作的过程中,我逐渐意识到,博客并不是额外的负担,而是帮助我完成知识沉淀、认知升级与自我成长的重要工具。本文回顾了我在高压环境下的创作选择、成长转变与反思。

2026-01-03 11:28:01 286

原创 Q-learning 算法 —— 无模型(model-free)强化学习

从已知模型到 Model-free 的强化学习转变:Q-Learning 算法,通过详细示例来讲解,理解 Q-table 的更新和贪婪策略

2025-12-25 18:18:50 1804

原创 深度强化学习 Deep Q-learning:把深度学习引入强化学习

(例如向左或向右、向上或向下)。Atari 的《Breakout》展示了一个具有离散动作空间的环境。AI 代理可以向左或向右移动;每个方向的移动都有一定的速度。如果智能体能够确定。

2025-12-25 18:05:24 670

原创 大白话讲强化学习的核心概念

强化学习过程:状态、动作、奖励和下一个状态的循环

2025-12-16 16:50:48 959

原创 【读论文】Back to Basics: Let Denoising Generative Models Denoise

无需 UNet 风格的 encoder-decoder、skip connection,作者构建了纯 Transformer 驱动、与任务解耦、对任意像素分辨率都可扩展的通用扩散模型 JiT,核心思想是:把时间步 t 的信息插入到 Transformer 的 input token 中,而不是额外分支或调制网络。

2025-12-08 14:42:59 1091 3

原创 Flow Matching 的直观理解

本文介绍了Flow Matching的基本概念,这是一种通过向量场将初始分布转化为目标数据分布的方法。Flow Matching利用神经网络学习向量场$u_t^\theta$,指导样本点从初始分布$p_{init}$运动到真实数据分布$p_{data}$。文中阐述了三个核心概念:轨迹(记录点在不同时刻的位置)、向量场(定义空间各点的运动速度)和流(由向量场确定的轨迹集合)。通过常微分方程描述了流与向量场的关系:$\frac{d\psi_t(x_0)}{dt}=u_t(\psi_t(x_0))$。

2025-11-26 16:38:58 955

原创 Unet1d:专为时间序列任务设计的标准 U-Net 架构

本文实现了一个1D版本的Unet模型,主要用于扩散模型的降噪任务。代码包含核心组件:1)残差块(ResnetBlock)和基础块(Block)实现,支持时间嵌入;2)上采样(Upsample)和下采样(Downsample)模块;3)两种归一化层(RMSNorm和LayerNorm);4)正弦位置编码(SinusoidalPosEmb)及其随机变体。模型架构参考了lucidrains的1D扩散模型实现,采用类似UNet的编码器-解码器结构,包含残差连接和注意力机制。代码结构清晰,提供了完整的卷积神经网络组件

2025-11-26 16:38:05 1138

原创 【代码】TorchCFM(Conditional Flow Matching library)代码入门

本文介绍了 TrochCFM 代码库,该论文提出了一种改进的基于流的生成模型,通过引入小批量最优传输(minibatch optimal transport)来增强条件流匹配(Conditional Flow Matching)方法。代码库包含核心模型架构、条件流匹配损失实现以及最优传输采样模块。

2025-11-12 20:00:23 1040

原创 【读论文】Neural Ordinary Differential Equations

本文提出了一种创新的连续深度神经网络模型,通过神经网络参数化隐藏状态的导数,利用ODE求解器计算输出。该模型具有三大优势:1) 恒定内存开销,突破深度训练瓶颈;2) 自适应计算策略,可平衡精度与速度;3) 支持构建连续正规化流和潜变量模型。关键贡献包括:实现不依赖求解器内部操作的梯度反向传播,推导连续的变量替换公式,以及处理连续时间序列数据的能力。这种方法为大规模端到端微分方程训练开辟了新途径。

2025-11-04 17:10:59 783

原创 【MATLBA】使用教程

本文介绍了MATLAB中的启动文件设置和绘图功能。主要内容包括:1) 通过软链接和环境变量配置startup.m文件,实现在MATLAB启动时自动运行脚本并设置工作目录;2) 二维和三维图形绘制方法,包括plot、surf等函数的参数设置和样式控制;3) 常用的字符串匹配(strmatch)和存在性检查(exist)函数的使用方法,用于处理字符串和变量/文件检查。文章提供了详细的代码示例和参数说明,涵盖了MATLAB基础操作中的文件配置、可视化表示和常用函数应用。

2025-11-04 16:56:43 1586

原创 【深度神经网络】优化深度神经网络

机器学习的应用是一个 高度依赖经验 的过程,伴随着大量迭代的过程,需要训练诸多模型,才能找到合适的那一个,优化算法能够帮助快速训练模型。

2025-11-02 17:23:39 820 3

原创 【深度学习】超参数调整(Hyperparameter Tuning)

机器学习模型参数分为两类:模型参数(内部可学习数值,如权重/偏置)和超参数(人为预设控制变量)。超参数包括网络参数(层数/激活函数等)、优化参数(学习率/batch size等)和正则化参数(dropout/权重衰减等)。调参需权衡多个因素,如batch size增大可提升训练速度但可能降低泛化能力,而学习率是最关键的超参数之一。常见调参方法包括随机搜索、网格搜索和贝叶斯优化,目标是找到最优超参数组合以获得最佳模型表现。

2025-11-02 13:26:33 1318 1

原创 【Microsoft Learn】Microsoft Azure 服务

本文介绍了如何在Azure平台上创建和使用虚拟网络(VNet)及相关服务。主要内容包括: 通过Azure门户创建虚拟网络,并配置子网、网络安全组(NSG)等组件。 使用Azure Bastion服务实现安全的虚拟机远程访问,避免直接暴露公共IP。 创建并配置公共IP地址,说明其支持的入站和出站通信场景。 演示在虚拟网络中创建多个虚拟机,并通过Bastion进行连接测试内部通信。 文章提供了详细的操作步骤和图示,帮助用户理解Azure网络架构和安全最佳实践,如使用Bastion替代直接RDP/SSH访问来增强

2025-11-01 14:55:27 1133

原创 【Dataset】如何高效处理海量数据并从中智能筛选出有代表性的样本?

本文要谈论的:从海量未标注数据中高效提取特征、发现结构,并基于多目标价值评估进行有策略的样本采样,服务于主动学习、异常检测、数据压缩或高质量数据集构建等任务。

2025-10-24 15:37:30 1257

原创 【科研绘图】PGF/TikZ 生成矢量图

TikZ 是 LaTeX 中强大的矢量绘图工具包,基于 PGF 底层语言开发。它通过几何/代数描述生成精确的矢量图形,支持绘制点、线、圆、多边形等基本图形,并能创建复杂的技术图表和神经网络示意图。入门教程展示了如何绘制直线、矩形、圆和椭圆等基本图形,并介绍了坐标系统、箭头控制等核心功能。TikZ 采用数学坐标系,x 轴向右、y 轴向上,通过简单的代码即可实现高质量的图形输出。推荐使用 standalone 文档类来单独编译每个图形,便于模块化管理和导出高精度图像。基本语法为 \draw[option]...

2025-10-16 22:25:40 1132

原创 【Python】秋招机考 —— 2025/9/17 华为 AI 方向

秋招机考,华为 AI,使用 Python 完成编程。

2025-10-15 09:27:28 879

原创 深入理解 RAG 系统

构建RAG系统的核心挑战在于确保检索内容的相关性、完整性和准确性。关键在于两大部分:数据工程(文档切分、元数据标注、更新机制)和检索策略(混合搜索、重排模型、查询重写)。实际应用中,PDF解析、语义分块、权限管理等问题常导致检索质量下降,而评估体系缺失使得优化效果难以量化。最终,RAG系统的成功取决于数据处理与检索流程的精细打磨,而非单纯依赖大模型能力。

2025-10-12 13:35:16 663

原创 Python 代码实现“Attention is all you need”

本文介绍了如何用Python实现Transformer架构,包括多头注意力机制、编码器-解码器结构、位置编码等核心组件。Transformer由编码器和解码器组成,各包含6个相同块。编码器层包含自注意力和前馈网络,解码器层增加了掩码自注意力和编码器-解码器注意力。多头注意力通过并行处理提高模型灵活性,核心是计算查询、键、值的注意力权重。位置编码通过正弦函数注入位置信息。在训练阶段采用右移策略实现自回归建模,推理时逐步生成输出。文章详细说明了各模块实现原理和Transformer在序列任务中的工作流程。

2025-10-10 16:15:46 1009

原创 Transformer 内部数据是如何流动和变换的

本文介绍了Transformer模型内部的数据流动过程。首先,输入文本通过词嵌入和位置编码转换为向量矩阵。核心环节是自注意力机制,通过计算Query、Key、Value矩阵,形成上下文相关的词表示。多头注意力机制让模型从多个角度理解语义。Encoder通过多层处理提炼语义信息,Decoder则使用掩码自注意力和Encoder-Decoder注意力逐步生成输出。最终,Decoder输出通过softmax转换为词概率,实现序列到序列的转换。整个过程展示了Transformer如何有效处理并转换序列数据。

2025-10-10 00:11:43 1023

原创 【神经网络】从逻辑回归到神经网络

本文以具体例子表明,神经网络可以看做是由多个逻辑回归模型经过组合构成的。让神经网络自己去学习抽象什么高级特征,我们提供的只有原始特征和最终结果,中间模型如何抽取高级特征对我们来说是黑盒。并从前向传播过程的逆向视角证明,在将数据通过所有隐藏层进行转换,并且在即将到达输出层之前,神经网络是在不断努力将数据投影到一个使其某种程度上线性可分的空间。

2025-10-09 23:37:25 663

原创 【神经网络】理解神经网络并使用神经网络实现多分类

本文探讨了神经网络与人脑神经系统的类比关系,解析了神经网络的基本结构和计算原理。神经元结构类比:生物神经元与人工神经网络的对应关系,将树突、胞体和轴突分别类比为输入、计算和输出部分。 神经网络层级:详细介绍了输入层、隐藏层和输出层的构成,解释了全连接层的概念及其矩阵运算特性。 激活函数作用:强调激活函数在引入非线性方面的重要性,使神经网络能够处理复杂问题。

2025-09-30 14:08:09 730

原创 【机器学习】监督学习 —— 决策树(Decision Tree)

决策树是一种基于树形结构的监督学习方法,用于分类和回归任务。它通过递归划分数据,利用信息熵或基尼不纯度等准则选择最优特征进行节点分裂,最终生成易于解读的决策规则。

2025-09-28 22:25:53 1037

原创 【机器学习】监督学习 —— 逻辑回归

逻辑回归是监督学习中重要的分类算法,其核心在于使用Sigmoid激活函数将线性回归结果映射到[0,1]区间实现概率预测。

2025-09-28 00:17:53 857 1

原创 【Python 语法】面试手撕代码必备的 Python 语法指南

本文总结了Python面试/笔试中常见的输入输出处理方式。针对不同输入场景提供了多种模板:对于小规模数据可直接使用input().split()读取;大规模数据建议用sys.stdin.buffer.read()提高效率。

2025-09-26 15:59:09 84

原创 【Python】秋招机考 —— 2025/9/24 华为 AI 方向

华为秋招 AI 机考笔试题,使用 Python 编程。

2025-09-26 12:15:55 196

原创 工具箱和学习地图

本文汇总了多领域实用工具与学习平台:1. 效率工具包括打字练习Keybr、图片处理iLoveIMG、GIF制作及文字提取工具;2. 学术科研提供论文检索(Connected Papers/Google Scholar)、顶会动态(NeurIPS/ICLR)资源;3. 语言学习推荐词汇平台(Vocabulary.com)、听力素材(BBC/VOA)及剑桥词典;4. 编程进阶涵盖LeetCode刷题、面试题库CodeTop和算法笔记;5. 财经资讯华尔街日报入口。

2025-09-18 15:35:47 316

原创 科研绘图,高级配色

本文展示了多个高质量科研论文中的图表案例,揭示了高级科研图表的视觉特征。

2025-09-15 16:56:18 226

原创 【Python】秋招机考 —— 2025/8/27 华为 AI 方向

2025 华为 AI 秋招机考题目包含15道单选题、5道多选题和2道机器学习编程题,涵盖核心算法与数学知识。单选题考察了Softmax激活、Transformer位置编码、Jacobi迭代、大模型幻觉现象、特征向量、K-means聚类、矩阵秩、实对称矩阵性质、SVD分解、概率论等知识点。多选题涉及高斯-赛德尔迭代和朴素贝叶斯分类器。

2025-08-31 20:30:12 590

原创 【机器学习】监督学习 —— 支持向量机(SVM)

支持向量机(SVM)是一种监督学习算法,通过寻找最优超平面实现分类和回归任务。其核心思想是最大化两个类别之间的间隔边界,提高模型泛化能力。

2025-08-31 16:51:00 1142

原创 【机器学习】监督学习 —— 线性回归

训练过程就是调节函数内部的 参数(Parameter),也可以叫做 权重(weight),来让预测值尽可能的接近 lablel。

2025-08-29 17:01:08 1109

原创 将大量参数统一放到 YAML 的最佳实践(含示例代码与用法)

本文提出了一种清晰的YAML配置文件管理方法,将项目参数按功能模块分类(data/train/model等),通过CLI加载和覆盖配置。

2025-08-17 20:34:26 855

原创 pip 和 conda,到底用哪个安装?

pip 还是 conda ?

2025-08-11 19:16:36 2281 3

中国科学技术大学 USTC,计算机硕士课程,计算机应用数学,编程作业

中国科学技术大学 USTC,计算机硕士课程,计算机应用数学,编程作业

2024-11-27

中科大EPC 英语考试阅读资料

中科大EPC 英语考试阅读资料

2024-07-24

中科大EPC英语考试听力音频与答案

中科大EPC英语考试听力音频与答案

2024-07-24

吉林大学微机接口实验讲义

吉林大学微机接口实验讲义

2024-06-25

吉林大学概率论考试真题

吉林大学概率论考试真题

2024-03-21

吉林大学面向对象程序设计期末模拟试题及答案

吉林大学面向对象程序设计期末模拟试题及答案 07,08,09,10 四年的期末模拟试题及答案。

2023-03-02

数据库-SQL复习知识

数据库-SQL复习知识

2024-03-07

数据库-ER图设计复习知识

数据库-ER图设计复习知识

2024-03-07

数据库-范式及范式分解复习知识

数据库-范式及范式分解复习知识

2024-03-07

吉林大学组合数学习题(提示版答案)

吉林大学组合数学习题(提示版答案)

2024-03-07

数据库-关系代数复习知识

数据库-关系代数复习知识

2024-03-07

缓冲区溢出攻击原理+实例讲解

缓冲区溢出攻击原理+实例讲解

2024-01-05

ST-GCN 论文原文及解读

ST-GCN 论文原文和解读的 pdf。 传统的⻣骼建模⽅法通常依赖于⼿⼯制作的部件或遍历规则,从⽽导致表达能⼒有限和泛化困难,针对特定应⽤设计的模型很难推⼴到其他应⽤。 在这项⼯作中,作者提出了⼀种新的动态⻣架模型,称为时空图卷积⽹络(ST-GCN),它通过⾃动从数据中学习空间和时间模式,超越了以前⽅法的限制。这种提法不仅具有更强的表达能⼒,⽽且具有更强的泛化能⼒。 这项⼯作的主要贡献在于三个⽅⾯: - 提出了 ST-GCN,这是⼀种基于图的动态⻣骼建模通⽤公式,这是第⼀个将基于图的神经⽹络应⽤于该任务。 - 针对⻣架建模的具体要求,提出了 ST-GCN 中卷积核的设计原则。 - 在基于⻣骼的动作识别的两个⼤规模数据集上,与之前使⽤⼿⼯制作部件或遍历规则的⽅法相⽐,所提出的模型获得了更好的性能,在⼿⼯设计⽅⾯的⼯作量⼤⼤减少。 - ST-GCN 的代码和模型是公开的。

2023-12-19

ResNet 论文理解含视频

ResNet 论文理解含视频 更深的神经网络更难训练。作者提出了一个 残差学习框架,以 简化 比以前使用的网络深度大得多的网络的训练。作者明确地将 ResNet 的层 重新表述为 学习残差函数,也就是 与层输入有关的函数,而 不是学习无关的函数。   残差函数是与层输入有关的函数,是因为 它是用来表示输入和输出之间的差异的。也就是说,残差函数是用来 学习输入到输出的映射的变化量,而不是直接学习输入到输出的映射。   ResNet 的 每个残差块 都试图 学习输入和输出之间的差异,而 不是直接学习输入到输出的映射。这样做的好处是可以让网络更容易优化,也可以 增加网络的深度 而 不会导致退化 问题。 作者提供了 全面的实验证据,表明这些残差网络更 容易优化,并且可以从相当大的深度中获得 精度。在 ImageNet 数据集上,评估了深度高达152层的残差网络,比 VGG 网络深8倍,但仍然具有较低的复杂性。这些残差网络的集合在 ImageNet 测试集上的误差达到3.57%。该结果在 ILSVRC 2015分类任务中获得第一名。还介绍了100层和1000层的 CIFAR-10分

2023-12-19

ResNet 原论文及原作者讲解

更深的神经网络更难训练。作者提出了一个 残差学习框架,以 简化 比以前使用的网络深度大得多的网络的训练。作者明确地将 ResNet 的层 重新表述为 学习残差函数,也就是 与层输入有关的函数,而 不是学习无关的函数。   残差函数是与层输入有关的函数,是因为 它是用来表示输入和输出之间的差异的。也就是说,残差函数是用来 学习输入到输出的映射的变化量,而不是直接学习输入到输出的映射。   ResNet 的 每个残差块 都试图 学习输入和输出之间的差异,而 不是直接学习输入到输出的映射。这样做的好处是可以让网络更容易优化,也可以 增加网络的深度 而 不会导致退化 问题。 作者提供了 全面的实验证据,表明这些残差网络更 容易优化,并且可以从相当大的深度中获得 精度。在 ImageNet 数据集上,评估了深度高达152层的残差网络,比 VGG 网络深8倍,但仍然具有较低的复杂性。这些残差网络的集合在 ImageNet 测试集上的误差达到3.57%。该结果在 ILSVRC 2015分类任务中获得第一名。作者还介绍了100层和1000层的 CIFAR-10分析。

2023-12-19

中科大 Epc 综合英语备考 之 单词篇

单词表+课后选词题目及答案,用了就知道有多好用!

2023-12-19

markdown 编辑器使用

markdown 编辑器使用

2023-12-19

LaTeX 常见数学符号

LaTeX 常见数学符号

2023-12-19

计算机专业基础知识汇总

1. 计算机的发展、类型及其应⽤领域 2. 计算机中数据的表⽰、存储和处理 3. 计算机软、硬件系统的组成及主要技术指标。 4. 操作系统的基本概念、功能、组成及分类。 5. Windows 操作系统的基本概念和常⽤术语,⽂件、⽂件夹、库等。 6. 多媒体技术的概念与应⽤ 7. 计算机病毒的概念、特征、分类与防治。

2023-12-19

MDETR 论文翻译及理解

MDETR - Modulated Detection for End-to-End Multi-Modal Understanding MDETR - ⽤于端到端多模态理解的调制检测 本资源是对 MDETR 论文的翻译及理解,内含论文原文以及翻译的 pdf 。 多模态推理系统依靠预先训练的⽬标检测器从图像中提取感兴趣的区域。然⽽,这个关键模块通常⽤作⿊匣⼦,独⽴于下游任务并在对象和属性的固定词汇上进⾏训练。这使得此类系统很难捕获以⾃由形式⽂本表达的视觉概念的⻓尾。在本⽂中,作者提出了MDETR,这是⼀种端到端调制检测器,它可以根据⼀个原始⽂本查询(如⼀个标题或⼀个问题)来检测图像中的对象。我们使⽤基于变压器的架构,通过在模型的早期阶段融合两种模式来对⽂本和图像进⾏联合推理。 代码和模型可在 https://github.com/ashkamath/mdetr 获取。

2023-12-19

吉林大学数据结构与算法题目集

吉林大学数据结构与算法题目集 1. 逆转链表 2. 求有先修条件课程的最少学期数 3. 无序树的直径

2023-11-17

吉林大学数据结构PTA上机题

吉林大学数据结构 PTA 上机题,只有题目,代码和思路,没有输入和输出的样例。 如果中文注释乱码,用GBK格式打开后不再乱码再用UTF-8格式保存即可。 为后来者提供一些参考,祝上机愉快!上机顺利! 1. spfa 算法判断负环以及任意两点间最短路径可负权 2. 表达式求值(中缀转后缀用栈实现) 3. 表达式树括号 4. 单源最短路径 5. 二叉树每层度为1节点数 6. 哈夫曼树编码与译码 7. 好中缀(字符串找第二长子串) 8. 快速排序 9. 马里奥魔法走城堡-邻接表版 10. 马里奥魔法走城堡-邻接矩阵版 11. 三元组表 12. 三元组表C=A+B 13. 拓扑排序和关键路径 14. 小明打字单链表 15. 小明打字双链表 16. 小明买苹果(栈实现) 17. 栈合法IO序列 18. 找出最左边节点数最多的路径并输出节点的值 19. 找出最左边最大二叉树路径和并输出路径节点值 20. 中根序列和后根序列 创建二叉树 21.走迷宫 22. 最小支撑树 23. 罪犯帮派

2023-11-17

数据结构训练代码(无他,唯手熟尔)

1. 树与递归 2. 图的专项训练 3. 栈和队列 4. 最大堆

2023-11-17

吉林大学程序设计 C 语言上机题目

吉林大学程序设计 C 语言上机题目,期中上机+期末上机,题目汇总整理。 .cpp 文件使用 VS Code 打开后,如果注释乱码,那么要修改编码格式。 找到整个vscode最下方的窄长条区域,即状态栏,显示有当前的编码格式是如 UTF-8 或 GBK,可以用鼠标单击编码格式然后选择 reopen with encode,选择 GBK 打开就不会中文注释乱码了,再点击编码格式,选择 save with encode 进行当前版本以某种编码格式保存,选择 UTF-8 即可。

2023-11-15

吉林大学数据结构 PTA 上机作业

吉林大学数据结构 PTA 上机作业,给后来者一个参考,不会的可以参考一下思路。 1.单链表基本操作 2.队列的实现及基本操作 3.二叉树查找结点及父节点 4.二叉树的创建与遍历 5.二叉树删除子树 6.快速排序算法 7.图的创建与删边操作 8.栈的实现及基本操作 9.字符串模式匹配

2023-11-17

华为云垃圾分类大赛-垃圾 40 分类

将属于相同类别的垃圾图片放在一个文件夹中,在 garbage/ 目录下总共有40个文件夹。 第一大类:其他垃圾/ 0: "一次性快餐盒",1: "污损塑料",2: "烟蒂",3: "牙签",4: "破碎花盆及碟碗",5: "竹筷" 第二大类:厨余垃圾/ 6: "剩饭剩菜",7: "大骨头",8: "水果果皮",9: "水果果肉",10: "茶叶渣",11: "菜叶菜根",12: "蛋壳",13: "鱼骨" 第三大类:可回收物/ 14: "充电宝",15: "包",16: "化妆品瓶",17: "塑料玩具",18: "塑料碗盆",19: "塑料衣架",20: "快递纸袋",21: "插头电线",22: "旧衣服",23: "易拉罐",24: "枕头",25: "毛绒玩具",26: "洗发水瓶",27: "玻璃杯",28: "皮鞋",29: "砧板",30: "纸板箱",31: "调料瓶",32: "酒瓶",33: "金属食品罐",34: "锅",35: "食用油桶",36: "饮料瓶" 第四大类:有害垃圾/ 37: "干电池",38: "软膏",39: "过期药物"

2023-05-12

垃圾分类(可回收、有害、厨余、不可回收)

可回收、有害、厨余、不可回收四大分类,分别存放到四个文件夹,已经划分好训练集 train 和测试集 test。 train 训练集:harmful_waste 1,120 张,kitchen_garbage 3,309 张, recyclable_garbage 8,111 张,other 1,592 张 test 训练集:400 张

2023-05-12

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除