tensorflow
xiaozhanfeng
这个作者很懒,什么都没留下…
展开
-
手写数字识别示例六(tensorflow2.0+图示)五层神经网络
import osimport timeimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltimport tensorflow.examples.tutorials.mnist.input_data as input_dataplt.rcParams["font.sans-serif"] = ["simhei"]### 程序执行开始时间begintime=time.time()### 读取数据m原创 2020-07-31 16:49:52 · 319 阅读 · 0 评论 -
手写数字识别示例五(tensorflow2.0+图示)两层神经网络
import osimport timeimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltimport tensorflow.examples.tutorials.mnist.input_data as input_dataplt.rcParams["font.sans-serif"] = ["simhei"]### 程序执行开始时间begintime=time.time()### 读取数据m原创 2020-07-31 16:15:42 · 324 阅读 · 0 评论 -
手写数字识别示例四(tensorflow2.0+图示)
import osimport timeimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltimport tensorflow.examples.tutorials.mnist.input_data as input_dataplt.rcParams["font.sans-serif"] = ["simhei"]### 程序执行开始时间begintime=time.time()### 读取数据m原创 2020-07-30 19:49:05 · 298 阅读 · 0 评论 -
手写数字识别示例三(tensorflow1.0+图示)
import osimport timeimport numpy as npimport tensorflow.compat.v1 as tfimport matplotlib.pyplot as pltimport tensorflow.examples.tutorials.mnist.input_data as input_datatf.disable_v2_behavior()plt.rcParams["font.sans-serif"] = ["simhei"]### 程序执行开始时原创 2020-07-30 14:52:26 · 219 阅读 · 0 评论 -
手写数字识别示例二
import osimport timeimport numpy as npimport tensorflow.compat.v1 as tfimport matplotlib.pyplot as pltimport tensorflow.examples.tutorials.mnist.input_data as input_datatf.disable_v2_behavior()### 程序执行开始时间begintime=time.time()### 读取数据mnist=input原创 2020-07-29 18:00:11 · 166 阅读 · 0 评论 -
手写数字识别示例一
import timeimport numpy as npimport tensorflow.compat.v1 as tfimport matplotlib.pyplot as pltimport tensorflow.examples.tutorials.mnist.input_data as input_datatf.disable_v2_behavior()### 程序执行开始时间begintime=time.time()### 读取数据mnist=input_data.read原创 2020-07-29 17:53:24 · 352 阅读 · 0 评论 -
波士顿房价预测示例一
import tensorflow as tfimport pandas as pdimport numpy as npimport timeimport matplotlib.pyplot as pltfrom sklearn.utils import shuffle # 数据打乱from sklearn.preprocessing import scale原创 2020-07-28 15:13:14 · 415 阅读 · 0 评论 -
多元线性回归学习(数据已归一化)小批量处理
import tensorflow.compat.v1 as tfimport pandas as pdimport numpy as npimport timeimport matplotlib.pyplot as pltfrom sklearn.utils import shuffletf.disable_v2_behavior()### 程序执行开始时间begintime=time.time()### 读取数据文件datafile=pd.read_csv("data/boston原创 2020-07-24 11:08:41 · 1016 阅读 · 0 评论 -
多元线性回归学习(数据已归一化)大批量处理
import tensorflow.compat.v1 as tfimport pandas as pdimport numpy as npimport timeimport matplotlib.pyplot as pltfrom sklearn.utils import shuffletf.disable_v2_behavior()### 程序执行开始时间begintime=time.time()### 读取数据文件datafile=pd.read_csv("data/boston原创 2020-07-23 16:49:23 · 1129 阅读 · 0 评论 -
多元线性回归学习(数据已归一化)
import tensorflow.compat.v1 as tfimport pandas as pdimport numpy as npimport timeimport matplotlib.pyplot as pltfrom sklearn.utils import shuffletf.disable_v2_behavior()### 程序执行开始时间begintime=time.time()### 读取数据文件datafile=pd.read_csv("data/boston原创 2020-07-23 16:38:04 · 1745 阅读 · 0 评论 -
多元线性回归学习(数据未归一化)
import tensorflow.compat.v1 as tfimport pandas as pdimport numpy as npimport timeimport matplotlib.pyplot as pltfrom sklearn.utils import shuffletf.disable_v2_behavior()### 程序执行开始时间begintime=time.time()### 读取数据文件datafile=pd.read_csv("data/boston原创 2020-07-23 16:29:15 · 1153 阅读 · 0 评论 -
最简线性学习示例2
import matplotlib.pyplot as pltimport timeimport numpy as npimport tensorflow.compat.v1 as tftf.disable_v2_behavior()begintime=time.time()np.random.seed(19740425)x_data=np.linspace(-1,1,1000)y_data=2*x_data+1.0+np.random.randn(*x_data.shape)*0.5原创 2020-07-21 16:17:30 · 112 阅读 · 0 评论 -
最简线性学习示例1
import matplotlib.pyplot as pltimport numpy as npimport tensorflow.compat.v1 as tftf.disable_v2_behavior()np.random.seed(19740425)x_data=np.linspace(-1,1,1000)y_data=2*x_data+1.0+np.random.randn(*x_data.shape)*0.5plt.scatter(x_data,y_data)plt.plo原创 2020-07-21 16:02:20 · 130 阅读 · 0 评论 -
机器翻译:西班牙文「---」英文
# -*- coding: utf-8 -*-from __future__ import absolute_import, division, print_function, unicode_literals # 把下一个新版本的特性导入到当前版本from sklearn.model_selection import train_test_splitimport tensorflow.compat.v1 as tfimport matplotlib.ticker as tickerimpo原创 2020-07-09 12:33:35 · 362 阅读 · 0 评论 -
BP对抗网络模拟手写数字
from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function### import tensorflow as tfimport tensorflow.compat.v1 as tfimport numpy as npimport collectionsimport gzipimport osfrom matplotlib import p原创 2020-07-02 16:53:07 · 217 阅读 · 0 评论 -
使用yolo v3检测标示视频
import cv2import timeimport tensorflow as tffrom absl import app, flags, loggingfrom absl.flags import FLAGSfrom yolov3_tf2.models import YoloV3, YoloV3Tinyfrom yolov3_tf2.dataset import transform_imagesfrom yolov3_tf2.utils import draw_outputsfla原创 2020-06-28 15:20:10 · 926 阅读 · 1 评论 -
股价预测-GRU网络
# coding=utf-8import osimport timeimport mathimport numpy as npimport pandas as pdimport tushare as tsimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dropout,Dense,GRUfrom sklearn.preprocessing import Mi原创 2020-05-25 10:09:46 · 1043 阅读 · 0 评论 -
股价预测-LSTM网络
# coding=utf-8import osimport timeimport mathimport numpy as npimport pandas as pdimport tushare as tsimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dropout,Dense,LSTMfrom sklearn.preprocessing import M原创 2020-05-25 10:08:36 · 428 阅读 · 0 评论 -
股价预测-RNN网络
# coding=utf-8import osimport timeimport mathimport numpy as npimport pandas as pdimport tushare as tsimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dropout,Dense,SimpleRNNfrom sklearn.preprocessing imp原创 2020-05-25 10:07:06 · 366 阅读 · 0 评论 -
循环神经网络预测股票价格
# coding=utf-8import osimport timeimport mathimport numpy as npimport pandas as pdimport tushare as tsimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dropout,Dense,SimpleRNNfrom sklearn.preprocessing imp原创 2020-05-21 11:39:03 · 1178 阅读 · 6 评论 -
学习卷积神经网络-ResNet
import tensorflow as tfimport numpy as npimport osfrom matplotlib import pyplot as pltfrom tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Densefrom tensorflow.keras import Modelnp.set_printoptions(thresh原创 2020-05-12 16:01:11 · 202 阅读 · 0 评论 -
卷积神经网络-InceptionNet
import tensorflow as tfimport numpy as npimport osfrom matplotlib import pyplot as pltfrom tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense,GlobalAveragePooling2Dfrom tensorflow.keras import Modelnp.原创 2020-05-12 15:59:49 · 143 阅读 · 0 评论 -
卷积神经网络-VGGNet
import tensorflow as tfimport numpy as npimport osfrom matplotlib import pyplot as pltfrom tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Densefrom tensorflow.keras import Modelnp.set_printoptions(thresh原创 2020-05-12 15:57:59 · 334 阅读 · 0 评论 -
学习卷积神经网络-AlexNet
import tensorflow as tfimport numpy as npimport osfrom matplotlib import pyplot as pltfrom tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Densefrom tensorflow.keras import Modelnp.set_printoptions(thresh原创 2020-05-12 15:56:22 · 138 阅读 · 0 评论 -
卷积神经网络-LenNet
import tensorflow as tfimport numpy as npimport osfrom matplotlib import pyplot as pltfrom tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Densefrom tensorflow.keras import Modelnp.set_printoptions(thresh原创 2020-05-12 15:54:20 · 558 阅读 · 0 评论 -
循环神经网络-字母预测4
import osimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dense,SimpleRNN,Embeddinginput_word="abcdefghijklmnopqrstuvwxyz"w_to_id={"a":0,"b":1,"c":2,"d":3,"e":4,"f":5,"g":6,"h":7,"i":8,"j":9原创 2020-05-12 15:50:53 · 199 阅读 · 0 评论 -
循环神经网络-字母预测3
import osimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dense,SimpleRNN,Embeddinginput_word="abcde"w_to_id={"a":0,"b":1,"c":2,"d":3,"e":4}x_train=[w_to_id["a"],w_to_id["b"],w_to_id["c"],w原创 2020-05-12 15:49:43 · 184 阅读 · 0 评论 -
循环神经网络-字母预测2
import osimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dense,SimpleRNNinput_word="abcde"w_to_id={"a":0,"b":1,"c":2,"d":3,"e":4}id_to_onehot={0:[1.,0.,0.,0.,0.],1:[0.,1.,0.,0.,0.],2:[0.,0原创 2020-05-12 15:48:13 · 121 阅读 · 0 评论 -
循环神经网络-字母预测1
import osimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.keras.layers import Dense,SimpleRNNinput_word="abcde"w_to_id={"a":0,"b":1,"c":2,"d":3,"e":4}id_to_onehot={0:[1.,0.,0.,0.,0.],1:[0.,1.,0.,0.,0.],2:[0.,0原创 2020-05-12 15:45:58 · 235 阅读 · 0 评论