c#比较两张图片是否相同

MSDN的一位技术人员告诉大家一个在C#中进行图像一致性比较的简易算法。一般的情况下,人们习惯的轮询图像中的每一个像素进行比对,如果出现一个像素点的不同则判断两张照片不一致。但这样做的缺点是显而易见的:大量的查询会显著拖慢系统速度,如果要比较的图像很多则可能导致系统挂掉。新的思路是把图像文件的数据流转化成一串Base64字串,然后只要比较这些字串就可以了。作者测试了256*256以下大小的一些图片,结果完全正确而且速度明显加快。来看他是如何实现的吧。

        /// <summary>
        /// 比较两张图片是否完全一样
        /// 
        /// 速度慢,但匹配精确
        /// 
        /// (方法:匹配两张图片的每一个像素)
        /// </summary>        
        private bool ImageCompareArray(Bitmap firstImage, Bitmap secondImage)
        {
            bool flag = true;
            string firstPixel;
            string secondPixel;
            if (firstImage.Width == secondImage.Width && firstImage.Height == secondImage.Height)
            {
                for (int i = 0; i < firstImage.Width; i++)
                {
                    for (int j = 0; j < firstImage.Height; j++)
                    {
                        firstPixel = firstImage.GetPixel(i, j).ToString();
                        secondPixel = secondImage.GetPixel(i, j).ToString();
                        if (firstPixel != secondPixel)
                        {
                            flag = false; break;
                        }
                    }
                }
                if (flag == false)
                {
                    return false;
                }
                else
                {
                    return true;
                }
            }
            else
            {
                return false;
            }
        }


        /// <summary>
        /// 比较两张图片是否完全一样
        /// 
        /// 速度快,但对大图片可能有些误差
        /// 
        /// (方法:将图片转换为Base64后,匹配Base64)
        /// </summary>
        public static bool ImageCompareString(Bitmap firstImage, Bitmap secondImage)
        {
            MemoryStream ms = new MemoryStream();
            firstImage.Save(ms, System.Drawing.Imaging.ImageFormat.Png);
            String firstBitmap = Convert.ToBase64String(ms.ToArray());
            ms.Position = 0;
            secondImage.Save(ms, System.Drawing.Imaging.ImageFormat.Png);
            String secondBitmap = Convert.ToBase64String(ms.ToArray());
            if (firstBitmap.Equals(secondBitmap))
            {
                return true;
            }
            else
            {
                return false;
            }
        }


测试了大量图片,只要改动一个像素点,新方法都可以检测出不同。不过目前为止还没有对500*600分辨率以上的图像进行测试。

运行大量测试以后,Base64方法的平均测试速度为每对照片0.1s。但是,使用传统的数组方法快慢则随图片而有明显差别。如果是完全一致的图片需要平均每对1.8s,检测出不同则只需要平均每对0.05s。综合看来匹配图片流的Base64编码在速度上具有优势。

C# 中,可以通过以下步骤比较两张图片的不同: 1. 加载两张图片。可以使用 `Bitmap` 类来加载图片。 ```csharp Bitmap image1 = new Bitmap("image1.jpg"); Bitmap image2 = new Bitmap("image2.jpg"); ``` 2. 确认两张图片的尺寸是否相同。如果尺寸不同,可以使用 `Graphics` 类将其中一图片缩放到和另一图片一样的尺寸。 ```csharp if (image1.Size != image2.Size) { Bitmap temp = new Bitmap(image2, image1.Size); image2 = temp; } ``` 3. 创建一个 `Bitmap` 类型的对象,用于存储两张图片的不同之处。可以通过 `LockBits` 方法获取图片数据,并对每个像素进行比较。 ```csharp Bitmap diffImage = new Bitmap(image1.Width, image1.Height); Rectangle rectangle = new Rectangle(0, 0, image1.Width, image1.Height); BitmapData bitmapData1 = image1.LockBits(rectangle, ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb); BitmapData bitmapData2 = image2.LockBits(rectangle, ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb); BitmapData diffData = diffImage.LockBits(rectangle, ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb); unsafe { byte* ptr1 = (byte*)bitmapData1.Scan0; byte* ptr2 = (byte*)bitmapData2.Scan0; byte* diffPtr = (byte*)diffData.Scan0; int bytesPerPixel = 4; int byteCount = bitmapData1.Stride * image1.Height; for (int i = 0; i < byteCount; i += bytesPerPixel) { if (ptr1[i] != ptr2[i] || ptr1[i + 1] != ptr2[i + 1] || ptr1[i + 2] != ptr2[i + 2]) { diffPtr[i] = 255; diffPtr[i + 1] = 0; diffPtr[i + 2] = 0; diffPtr[i + 3] = 255; } else { diffPtr[i] = 0; diffPtr[i + 1] = 0; diffPtr[i + 2] = 0; diffPtr[i + 3] = 255; } } } image1.UnlockBits(bitmapData1); image2.UnlockBits(bitmapData2); diffImage.UnlockBits(diffData); ``` 4. 将不同之处存储的图片保存到本地。 ```csharp diffImage.Save("diffImage.jpg", ImageFormat.Jpeg); ``` 以上就是在 C#比较两张图片不同之处的基本步骤。需要注意的是,这种方法只能检测像素级别的不同,如果图片的颜色、明暗、对比度等方面有变化,可能无法检测出来。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值