一、 Map Join原理
-
Map Join介绍
MapJoin顾名思义,就是在Map阶段进行表之间的连接,map阶段直接拿另外一个表的数据和内存中表数据做匹配。而不需要进入到Reduce阶段才进行连接。这样就节省了在Shuffle阶段时要进行的大量数据传输。从而起到了优化作业的作用。通常用于一个很小的表和一个大表进行join的场景。 -
MapJoin的原理及过程

执行过程如上图:
- 首先是在本地客户端生成的Task A,是一个MapReduce Local Task,负责把小表数据从HDFS读取到内存哈希表。读取后,它会将内存中的哈希表序列化为磁盘上的文件,并将哈希表文件压缩为tar文件
- 接下来是Task B,该任务是一个没有Reduce的MapReduce任务,启动的时候,上一步骤的tar文件会被放到Hadoop分布式缓存中,Hadoop分布式缓存将把tar文件填充到每个Mapper的本地磁盘并解压缩该文件。然后mapper可以将哈希表文件反序列化回内存,并像以前一样执行join工作,也就是根据大表中的每一条记录去和DistributeCache中小表对应的HashTable关联,并直接输出结果。
关于自动优化:对于MapJoin,查询处理器应该知道大表是哪个输入表。在执行阶段,其他输入表将被识别为小表,这些表需要保存在内存中。但是,一般来说,查询处理器在编译期间不知道输入文件的大小(即使有统计数据),因为某些表可能是由子查询生

本文详细介绍了Hive的Map Join原理,通过减少数据传输提高性能,尤其适用于小表与大表连接的场景。MapJoin在Map阶段完成连接操作,避免了Reduce阶段的大量数据传输。文章还讨论了不同Hive版本中MapJoin的使用变化,并列举了关键参数,如`hive.auto.convert.join`和`hive.mapjoin.smalltable.filesize`,以及它们对优化MapJoin的影响。
最低0.47元/天 解锁文章
2035

被折叠的 条评论
为什么被折叠?



