论文题目:RFA-Net: Residual feature attention network for fine-grained imageinpainting
论文地址:https://www.sciencedirect.com/science/article/pii/S0952197622008041
GitHub地址:https://github.com/Jamie-61/RFA-Net-Inpainting
一、研究动机
作者提出了一种新的基于GAN的残差注意力图像修复模型,该模型改进了传统的编码-解码图像修复网络,提出了一种具有纹理感知能力的主干网络(Residual Feature Attention Network, RFA-Net)
二、主要方法
网络采用编码器-解码器(Encoder-Decoder)结构作为生成器网络模型的主干,不同于传统的基于GAN的图像修复网络结构,该文章中的Encoder部分由n个RA模块所构成,Decoder部分主要由MFE模块和DFF模块所组成。
具体的网络结构如下:
生成器的输入为待修复的破损图像,首先通过Encoder对图像特征进行提取修复,然后再通过Decoder对提取修复的特征进行增强融合以更好地修复出原始图像,从而得到修复后的清晰图像。Encoder通过RA模块,可以保留图像特征的浅层纹理信息并将其传递至深层,还可以自适应地学习不同