样本量:63万多个样本,315个城市,如需上市公司可将上市公司所在地级市对应即可,原始灯光数据来源于NASA,2024年到11月份。
数据指标:省份 城市 名称 地址 latitude longitude 时间 夜间灯光值 假期灯光中位数 区域灯光中位数 是否加班
1、数据获取与处理:从NASA下载经过校正的VNP46A2日度夜间灯光数据,解析HDF5格式文件,获取数据量约4T的500米分辨率的夜间灯光数据。
2、数据清理:剔除因云层、极端事件等导致的数据异常,确保对照网格数量充足,并剔除观测不足的记录。
3、政府位置定位与数据提取:通过百度地图获取全部政府地址,再根据高德API匹配经纬度,并进行地址纠偏得出政府的经纬度数据。根据政府地址的经纬度,定位到相应网格,通过ArcGIS的提取值至表工具提取该网格及周边8个网格的夜间灯光亮度。
4、时间维度比较:将政府所在网格在法定节假日的灯光亮度的中位数作为基准,若某日亮度超过基准,可能表明夜间加班。
5、空间维度比较:将政府周边网格的灯光亮度的中位数作为基准,若某日亮度超过周边网格,可能表明夜间加班。
6、超时加班判定:同时满足时间和空间维度标准时,认定为超时加班,1为加班,0为不加班。
部分数据截图:
参考文献
[1]宣扬,武凯文.超时加班与劳动收入份额:基于卫星夜间灯光的经验证据[J].世界经济,2023,46(10):217-240.
【下载→
方式一(推荐):主页个人 简介
方式二:数据下载方式汇总-CSDN博客