斐波那契数列的几种计算机解法

斐波那契数列传说起源于一对非常会生的兔子。定义:


这个数列有很多奇妙的性质(比如 F(n+1)/F(n) 的极限是黄金分割率),用计算机有效地求解这个问题的解是一个比较有意思的问题,本文一共提供了4种解法。


解法一:递归

这是最最最直观的想法,是每个人都能编写的简单程序,优点是非常明显的:简单易懂,清晰明了。但是缺点就是效率非常低,时间复杂度是指数级的。举个例子,比如要计算F(5),那么就要就算F(4)+F(3),而在计算F(4)的时候又要计算F(3),导致了 F(3)的重复计算,如果n越来越大,重复的计算量是无比巨大的,这就是瓶颈所在。

代码:

 

[cpp]   view plain copy
  1. int F(int n)  
  2.  
  3.     if(n <= 0)  
  4.         return 0;  
  5.     else if(n == 1)   
  6.         return 1;  
  7.     else  
  8.         return F(n-1) F(n-2);  
  9.  

 

那么怎么克服这个问题?这就引出了解法二。


解法二:动态规划

解法一的缺点是因为重复计算,那么我们只需要把一些已经计算过的答案存放起来,那这个缺点就解决了。我们用一维数组来实现,比如 F(5)就存放在数组下标为5的数据单元里。

代码:

 

[cpp]   view plain copy
  1. #include  
  2. using namespace std;  
  3. int F(int n)  
  4.  
  5.     if(n<=0)  
  6.         return 0;  
  7.     if(n==1)  
  8.         return 1;  
  9.     intans new int[n+1];  
  10.     ans[0] 0;  
  11.     ans[1] 1;  
  12.   
  13.     for(int i=2; i<=n; i++)  
  14.         ans[i] ans[i-1] ans[i-2];  
  15.       
  16.     int tmp ans[n];  
  17.     delete[] ans;  
  18.     return tmp;  
  19.  


 

 

这个算法的时间复杂度是 O(n),空间复杂度也是O(n)。复杂度来到了线性,这是我们所高兴的,但是,是否还有比线性更好的复杂度?

 

解法三:求解通项公式

如果我们知道了通项公式,那么我们就能在 O(1)的时间内得到F(n)。这是一个完美的时间复杂度。

这里只介绍一种求解通项公式的技巧——矩阵。矩阵作为一个强大的数学工具有太多不为人知的应用。当然还有其它方法,比如高中数学竞赛里面的特征方程,有兴趣的读者可以自行搜索一下。

我们很容易发现:

所以剩下的问题就是只要求出了就求出了F(n)。

求这个矩阵的 n次方的解法也有很多,这里介绍一种方法——相似对角化。

于是

上述方程的解为

 

于是解得

 的基础解系为

的基础解系为

所以令

 

我们有:

所以,

 

两边取n次方,我们得到:

最后,做矩阵运算(实际上我们只需要 An 里左下角的数据),便可以得到:

通项公式的计算就完成了。(推导过程需线性代数基础)

时间复杂度是完美了,那么有没有缺点呢?当然有,公式里引入了无理数,所以不能保证运算结果的精度。

 

解法四:分治

解法三的缺点是精度无法保证,那么我们自然就想到,然计算机自己去计算,进行n-1次矩阵乘法不就行了。这是最直观的想法,虽然是线性的,但复杂度还是不令人满意,有没有更好的复杂度?比如 log2 (n)?答案是有的。

先来看一个背景知识:一个十进制正数 n的用二进制表示要用floor( log2(n) )+1 位。(floor(x)返回不大于 x的最大整数)

用二进制方式表示 n

所以

如果能得到的值就可以经过 log2 (n)次乘法得到

显然可以通过递推得到:

 

代码:

 

[cpp]   view plain copy
  1. Class Matrix;   //假设已经实现了矩阵类  
  2.   
  3. Matrix MatrixPow(const Matrix &m, int n)    //计算m的n次方  
  4.  
  5.     Matrix result Matrix::identity;   //单位矩阵  
  6.     Matrix tmp m;  
  7.     for(; n; >>= 1)  
  8.      
  9.         if(n 1)  
  10.             result *= tmp;  
  11.         tmp *= tmp;  
  12.      
  13.  
  14.   
  15.   
  16. int F(int n)  
  17.  
  18.     Matrix an MatrixPow(A, n);  
  19.     return F1*an(1,0) F0*an(1,1);     //an(1,0)表示an的第1行第0列的元素  
  20.  

时间复杂度仅为O(log2 (n))

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
斐波那契数列是一个经典的数列,可以通过状态机来实现计算。状态机是一种抽象的模型,可以根据输入和当前状态的转换规则来进行计算。在斐波那契数列中,每一项的值都等于前两项的和。我们可以使用状态机来追踪和计算每一项的值。 下面是使用状态机实现斐波那契数列计算的步骤: 1. 初始化两个变量,分别表示前两项的值,设为0和1。 2. 设置一个计数器,初始化为2,表示已经计算了两项。 3. 使用循环,从第三项开始,每次迭代计算下一项的值。 4. 迭代过程中,更新前两项的值,并将计数器加1。 5. 循环结束后,得到了指定数量的斐波那契数列项的计算结果。 通过状态机的方式,我们可以按照斐波那契数列的定义和规律,依次计算每一项的值,并输出结果。 注意:状态机是一种抽象的计算模型,并不是直接将斐波那契数列的计算过程转化成状态机的实现。这里的描述是一种示意性的解释,实际代码的实现可能会有所不同。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [斐波那契(Fibonacci)数列的几种计算机解法](https://blog.csdn.net/weixin_39561168/article/details/118459018)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值