五大常用算法(贪心算法)

参考资料:
http://blog.jobbole.com/83952/
http://www.iplaypy.com/code/c346.html
http://python.jobbole.com/81463/
http://blog.csdn.net/blog_empire/article/details/50250561

一、基本概念:

所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。

所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。

二、贪心算法的基本思路:

1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。

三、贪心算法适用的问题

贪心策略适用的前提是:局部最优策略能导致产生全局最优解。

实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。

四、贪心算法的实现框架

从问题的某一初始解出发;

while (能朝给定总目标前进一步)
{
利用可行的决策,求出可行解的一个解元素;
}

由所有解元素组合成问题的一个可行解;

五、贪心策略的选择

因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。

六、实例
1.背包问题

2.Huffman编码

import numpy as np  
import math  

# This class is the process of the haffman  
class createHuffmanTree():  
    def __init__(self, source):  
        self.queue = source  


    def haf(self):  
        queue = self.queue[:]#复制原来的队列  

        newqueue = [] #构造一个存放新队列的列表  

        #构建哈夫曼树  
        while len(queue)>1:  
            queue.sort(key=lambda item :item.probability)  
            node_left = queue.pop(0)  
            node_right = queue.pop(0)  
            if node_left.symbol is not None:  
                newqueue.append(node_left)  
            if node_right.symbol is not None:  
                newqueue.append(node_right)  
            if node_left.probability>node_right.probability:  
                node_left.codeWord = '0'  
                node_right.codeWord = '1'  
            else:  
                node_left.codeWord = '1'  
                node_right.codeWord = '0'  
            node_fagher = HuffmanObjext( probability = node_left.probability+node_right.probability )  
            node_fagher.lChild = node_left  
            node_fagher.rChild = node_right  
            node_left.father = node_fagher  
            node_right.father = node_fagher  
            queue.append(node_fagher)  

        queue[0].father = None  

        return  newqueue, queue[0]  
    # 哈夫曼编码  
    def huffmanEncoding(self):  
        queue, root = result.haf()  
        probability = []  
        codes = ['']*len(queue)  
        symbol = []  

        for i in range(len(queue)):  
            tmp_node = queue[i]  
            while tmp_node.father != None:  
                codes[i] = tmp_node.codeWord + codes[i]  
                tmp_node =  tmp_node.father    


            queue[i].codeWord = codes[i]   
            symbol.append(queue[i].symbol)  
            probability.append(queue[i].probability)    

        return symbol, codes, probability  



# This is the Objext the Huffman  

class HuffmanObjext():  

    # get the Object of huffman  
    def __init__(self, symbol = None, probability = None,codeWord = '', procode = None ):  

        self.symbol = symbol   
        self.probability = probability  
        self.codeWord = codeWord  
        self.procode = procode  
        self.father = None  
        self.lChild = None  
        self.rChild = None  

if __name__ == '__main__':  
    x1 = HuffmanObjext(symbol = "X1", probability = 0.375, codeWord = '' )    
    x2 = HuffmanObjext(symbol = "X2", probability = 0.125,codeWord = '' )            
    x3 = HuffmanObjext(symbol = "X3", probability = 0.25, codeWord = '')    
    x4 = HuffmanObjext(symbol = "X4", probability = 0.25, codeWord = '')       
    x5 = HuffmanObjext(symbol = "X5", probability = 0.125, codeWord = '')    
#     x6 = HuffmanObjext(symbol = "X6", probability = 0.1,\  
#                     codeWord = '')  

    result = createHuffmanTree([ x1,x2, x3, x4, x5])  
    # a, b = result.haf()  
    symbol, code, probability = result.huffmanEncoding()  
    H = []  
    K = []  
    for item in zip(code, probability):  
        print (item[1] )
        H_X = item[1] * math.log(item[1],2)  
        K_X = item[1] *len(item[0])  
        H.append(H_X)  
        K.append(K_X)  


    H_X = -np.sum(H)  
    K_X = np.sum(K)     
    n = H_X /K_X  


    print ("Encoding" ) 
    print (symbol, "\n" ) 
    print ( code  )
#     print info  
    print (H_X ) 
    print ( "average of procode", K_X  )
    print ("aberage of n", n  )

3.最小生成树问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值