掌握动态规划的20种模式

动态规划(DP)可以说是编程面试中最难的话题。不过,和其他任何话题一样,学习它的最快方法是理解不同的模式,这些模式能帮助你解决各种各样的问题。

在这里插入图片描述

在本文中,我将带你了解20种模式,这些模式会让学习动态规划变得容易得多。我会分享每种模式的使用场景,并提供力扣(LeetCode)上的练习题链接,以便你能更好地学习。我按照从易到难的顺序列出了这些模式,还附上了学习每种模式的参考资源链接。

  1. 斐波那契数列模式:即Fibonacci Sequence,当一个问题的解决方案依赖于相同问题的较小实例的解决方案时,斐波那契数列模式就很有用。存在一种清晰的递归关系,通常类似于经典的斐波那契数列公式 F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n) = F(n-1) + F(n-2) F(n)=F(n1)+F(n2)
    在这里插入图片描述

  2. 卡登算法(Kadane’s Algorithm):卡登算法主要用于解决最大子数组问题及其变体,这类问题要求在一维数字数组中优化一个连续的子数组。
    在这里插入图片描述

  3. 0/1背包模式:即0/1 Knapsack,当出现以下情况时,0/1背包模式很有用:
    在这里插入图片描述

  4. 完全背包模式:即Unbounded Knapsack,当出现以下情况时,完全背包模式很有用:

  5. 最长公共子序列(LCS)模式:即Longest Common Subsequence,当你得到两个序列,并且需要找到一个在这两个给定序列中都按相同顺序出现的子序列时,最长公共子序列模式就很有用。
    在这里插入图片描述

  6. 最长递增子序列(LIS)模式:即Longest Increasing Subsequence,最长递增子序列模式用于解决涉及在一个序列中找到元素按递增顺序排列的最长子序列的问题。
    在这里插入图片描述

  7. 回文子序列模式:即Palindromic Subsequence,当解决涉及在一个序列(通常是字符串)中找到一个正向和反向读取都相同的子序列的问题时,回文子序列模式很有用。
    在这里插入图片描述

  8. 编辑距离模式:即Edit Distance,编辑距离模式用于解决涉及使用最少操作次数将一个序列(通常是字符串)转换为另一个序列的问题。允许的操作通常包括插入、删除和替换。

  9. 子集和模式:即Subset Sum,子集和模式用于解决需要确定给定集合中的元素子集是否能求和达到特定目标值的问题。

  10. 字符串分割模式:即String Partition,字符串分割模式用于解决涉及将一个字符串分割成满足特定条件的较小子字符串的问题。当出现以下情况时,它很有用:

    • 你在处理涉及字符串或序列的问题。
    • 问题要求将字符串分割成子字符串或子序列。
    • 你需要在这些分割上优化某些属性(例如,最小化成本、最大化价值)。
    • 整个问题的解决方案可以由较小子字符串的子问题解决方案构建而成。
    • 需要考虑字符串的不同分割方式。
    • 力扣题目
  11. 卡特兰数模式:即Catalan Numbers,卡特兰数模式用于解决可以分解为更小、相似子问题的组合问题。这种模式的一些应用场景包括:

  12. 矩阵链乘法模式:即Matrix Chain Multiplication,这种模式用于解决涉及确定操作的最优顺序以最小化一系列操作成本的问题。它基于著名的优化问题:矩阵链乘法。当出现以下情况时,它很有用:

  13. 计算不同方式模式:即Count Distinct Ways,当出现以下情况时,这种模式很有用:

    • 你需要计算实现某个目标或达到特定状态的不同方式的数量。
    • 问题涉及通过一系列选择或步骤来达到目标。
    • 有多种有效的路径或组合可以达到解决方案。
    • 问题可以分解为具有重叠解决方案的较小子问题。
    • 你在处理询问 “有多少种方式” 可以完成某事的组合问题。
    • 力扣题目
  14. 网格上的动态规划模式:即DP on Grids,网格上的动态规划模式用于解决涉及在网格(二维数组)中导航或优化路径的问题。对于这些问题,你需要考虑多个移动方向(例如,向右、向下、对角线),并且每个单元格的解决方案取决于相邻单元格的解决方案。

  15. 树上的动态规划模式:即DP on Trees,当出现以下情况时,树上的动态规划模式很有用:

  16. 图上的动态规划模式:即DP on Graphs,当出现以下情况时,图上的动态规划模式很有用:

  17. 数位动态规划模式:即Digit DP,当出现以下情况时,数位动态规划模式很有用:

  18. 位掩码动态规划模式:即Bitmasking DP,位掩码动态规划模式用于解决涉及大量状态或组合的问题,其中每个状态可以使用整数中的位有效地表示。当出现以下情况时,它特别有用:

  19. 概率动态规划模式:即Probability DP,当出现以下情况时,这种模式很有用:

  20. 状态机动态规划模式:即State Machine DP,当出现以下情况时,状态机动态规划模式很有用:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硅基创想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值