2020-10-22

1、副本与视图

副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置

视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置

  • 视图一般发生在:
    1、numpy 的切片操作返回原数据的视图。
    2、调用 ndarray 的 view() 函数产生一个视图。

  • 副本一般发生在:
    1、Python 序列的切片操作,调用deepCopy()函数。
    2、调用 ndarray 的 copy() 函数产生一个副本。

1.1 无复制

所有赋值运算不会为数组和数组中的任何元素创建副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。

import numpy as np
x=np.array([1,2,3,4,5,6])
y=x
y[0]=-2
print(x)
print(y)

此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。

1.2 视图或浅拷贝

ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。

1.3 副本或深拷贝

ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

import numpy as np
x=np.array([1,2,3,4,5,6])
y=x.copy()
y[0]=-2
print(x)
print(y)

https://www.runoob.com/numpy/numpy-copies-and-views.html

2、索引与切片

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

数组索引机制指的是用方括号([])加序号的形式引用单个数组元素,它的用处很多,比如抽取元素,选取数组的几个元素,甚至为其赋一个新值。

2.1 整数索引

要获取数组的单个元素,指定元素的索引即可。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(x[2])  

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
print(x[3])  
print(x[2][1])  
print(x[2, 1])  

2.2 切片索引

切片操作是指抽取数组的一部分元素生成新数组。对 python 列表进行切片操作得到的数组是原数组的副本,而对 Numpy 数据进行切片操作得到的数组则是指向相同缓冲区的视图

如果想抽取(或查看)数组的一部分,必须使用切片语法,也就是,把几个用冒号( start:stop:step )隔开的数字置于方括号内。

为了更好地理解切片语法,还应该了解不明确指明起始和结束位置的情况。如省去第一个数字,numpy 会认为第一个数字是0;如省去第二个数字,numpy 则会认为第二个数字是数组的最大索引值;如省去最后一个数字,它将会被理解为1,也就是抽取所有元素而不再考虑间隔。

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页