sqoop+mysql+hive收集数据&例子

目录

业务场景

解决方案

具体步骤

一. 下载安装sqoop

二.sqoop连接测试

三. 使用sqoop将mysql数据落地到hive表

小结

sqoop 导入import和导出export命令参数

例子1 sqoop import

import时需要注意几点

 例子2 sqoop export

export时需要注意几点

遇到问题


业务场景

场景一. 业务场景中存在需要将业务数据存放到hive中做数据BI统计等情形。

场景二. hive数据统计分析后的最终结果需要转存到mysql中以便展示到用户端。

解决方案

我们可以使用sqoop工具,将业务数据库mysql或者oracle中的数据落地到hive表中,以方便后续的大数据统计分析。

具体步骤

说明:mysql数据库或者oracle数据的安装大人们可以自己搜索资料了;

hive和hadoop的安装:

Windows10 安装Hadoop3.3.0_xieedeni的博客-CSDN博客

Windows10安装Hive3.1.2_xieedeni的博客-CSDN博客

一. 下载安装sqoop

1.下载

下载地址:Index of /dist/sqoop

这里注意版本:

sqoop版本为:sqoop1和sqoop2,具体这俩的区别大人们可以自行搜索下资料。

sqoop1为版本1.4.7以下版本,sqoop2为1.99.1以上版本,最新为1.99.7版。

这里我下载使用的是1.4.7版:Index of /dist/sqoop/1.4.7

2.配置环境变量

这里我使用windows环境安装使用

 解压后,配置环境变量SQOOP_HOME=sqoop解压后地址,path增加新配置%SQOOP_HOME%/bin

 3.修改sqoop配置文件

复制文件%SQOOP_HOME%/conf下的sqoop-env-template.sh 命名为sqoop-env.sh

修改%SQOOP_HOME%/conf/sqoop-env.sh

# Set Hadoop-specific environment variables here.

#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=D:\work\soft\hadoop-3.3.0

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=D:\work\soft\hadoop-3.3.0

#set the path to where bin/hbase is available
#export HBASE_HOME=

#Set the path to where bin/hive is available
export HIVE_HOME=D:\work\soft\apache-hive-3.1.2-bin

export HIVE_CONF_DIR=D:/work/soft/apache-hive-3.1.2-bin/conf
#Set the path for where zookeper config dir is
#export ZOOCFGDIR=

4.mysql-connector-java-8.0.x.jar

 下载和拷贝一个mysql-connector-java-8.0.x.jar%SQOOP_HOME%/lib目录下:

mysql-connector-java-8.0.21.jar

下载地址:https://dev.mysql.com/downloads/file/?id=496589

二.sqoop连接测试

1.version测试

sqoop version

2.连接数据库测试

sqoop list-databases --connect jdbc:mysql://127.0.0.1:3306/mydb --username root --password 123456

 输出了表信息,成功了。

三. 使用sqoop将mysql数据落地到hive表

1.全量导入

sqoop import --connect jdbc:mysql://127.0.0.1:3306/ddbi --username root --password 123456 --table behavior --hive-import --hive-database=dd_database_bigdata --hive-table dwd_base_event_log_his --m 1 --input-null-string '\\N' --input-null-non-string '\\N'

这里的input-null-string和input-null-non-string是出来mysql中的空字符串字段

 成功了

 进行hive查询

 select * from tablename where id = 1; 

hive需不需要提交建表呢?其实可以不用建,因为再导入时会创建

2.增量导入

sqoop import --connect jdbc:mysql://127.0.0.1:3306/ddbi --username root --password 123456 --table behavior --hive-import --hive-database dd_database_bigdata --hive-table dwd_base_event_log_his --m 1 --incremental append --check-column id --last-value 124870 --input-null-string '\\N' --input-null-non-string '\\N'

 更新成功

3.增量导入job

a.创建增量抽取的job

sqoop job --create fdc_equipment_job \

         -- import --connect jdbc:oracle:thin:@xx.xx.xx.xx:1521:xx \

                    --username xxx--password xxx\

                    --table PROD_FDC.EQUIPMENT  \

                    --target-dir=/user/hive/warehouse/fdc_test.db/equipment \

                    --hive-import --hive-database fdc_test --hive-table equipment \

                    --incremental append \

                    --check-column equipmentid --last-value 1893

说明:增量抽取,需要指定--incremental append,同时指定按照源表中哪个pk字段进行增量--check-column equipmentid,并指定hive表中pk当前最大值--last-value 1893。创建sqoop job的目的是,每次执行job以后,sqoop会自动记录pk的last-value,下次再执行时,就会自动指定last-value,不需要手工去改了。

 b.执行sqoop job

sqoop job --exec fdc_equipment_job

c.删除sqoop job

sqoop job --delete fdc_equipment_job

d.查看sqoop job

sqoop job --show sqoop_job_order

sqoop job --create sqoop_job_behavior_his -- import --connect jdbc:mysql://127.0.0.1:3306/ddbi --username root --password 123456--table behavior --hive-import --hive-database dd_database_bigdata --hive-table dwd_base_event_log_his --incremental append --check-column id --last-value 125357 --m 1 --input-null-string '\\N' --input-null-non-string '\\N'

sqoop job --exec sqoop_job_behavior_his

小结

sqoop 导入import和导出export命令参数

通用通用参数
选项     含义说明
–connect     指定JDBC连接字符串
–connection-manager     指定要使用的连接管理器类
–driver     指定要使用的JDBC驱动类
–hadoop-mapred-home 指定$HADOOP_MAPRED_HOME路径
–help     打印用法帮助信息
–password-file     设置用于存放认证的密码信息文件的路径
-P     从控制台读取输入的密码
–password     设置认证密码
–username     设置认证用户名
–verbose     打印详细的运行信息
–connection-param-file     可选,指定存储数据库连接参数的属性文件

import
选项     含义说明
–append     将数据追加到HDFS上一个已存在的数据集上
–as-avrodatafile     将数据导入到Avro数据文件
–as-sequencefile     将数据导入到SequenceFile
–as-textfile     将数据导入到普通文本文件(默认)
–boundary-query     边界查询,用于创建分片(InputSplit)
–columns <col,col,col…>     从表中导出指定的一组列的数据
–delete-target-dir     如果指定目录存在,则先删除掉
–direct     使用直接导入模式(优化导入速度)
–direct-split-size     分割输入stream的字节大小(在直接导入模式下)
–fetch-size     从数据库中批量读取记录数
–inline-lob-limit     设置内联的LOB对象的大小
-m,–num-mappers     使用n个map任务并行导入数据
-e,–query     导入的查询语句
–split-by     指定按照哪个列去分割数据
–table     导入的源表表名
–target-dir 导入HDFS的目标路径
–warehouse-dir HDFS存放表的根路径
–where 指定导出时所使用的查询条件
-z,–compress     启用压缩
–compression-codec     指定Hadoop的codec方式(默认gzip)
–null-string     果指定列为字符串类型,使用指定字符串替换值为null的该类列的值
–null-non-string <null-string     如果指定列为非字符串类型,使用指定字符串替换值为null的该类列的值

--create-hive-table	如果Hive表不存在,则自动创建;如果以及存在,则会报错
--hive-drop-import-delims	导入到Hive时,删除原数据中包含的 \n, \r,\01字符。
--hive-delims-replacement	导入到Hive时,将原数据中的\n, \r,  \01 替换成自定义的字符。
--hive-partition-key	指定Hive表的分区字段。
--hive-partition-value <v>	指定导入Hive表的分区字段的值。
--map-column-hive <map>	设置导入Hive时,指定字段的数据类型。如设置ID为S听类型:--map-column-hive  ID=String

export
选项     含义说明
–validate     启用数据副本验证功能,仅支持单表拷贝,可以指定验证使用的实现类
–validation-threshold     指定验证门限所使用的类
–direct     使用直接导出模式(优化速度)
–export-dir
    导出过程中HDFS源路径
-m,–num-mappers     使用n个map任务并行导出
–table     导出的目的表名称
–call     导出数据调用的指定存储过程名
–update-key     更新参考的列名称,多个列名使用逗号分隔
–update-mode     指定更新策略,包括:updateonly(默认)、allowinsert
–input-null-string     使用指定字符串,替换字符串类型值为null的列
–input-null-non-string     使用指定字符串,替换非字符串类型值为null的列
–staging-table     在数据导出到数据库之前,数据临时存放的表名称
–clear-staging-table     清除工作区中临时存放的数据
–batch     使用批量模式导出

例子1 sqoop import

#!/bin/bash
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
#do_date=$(date -d "-1 day" +%F)

if [ -n "$1" ]; then
  do_date=$1
else
  do_date=$(date -d "-1 day" +%F)
fi

jdbc_url_dduser="jdbc:mysql://xxx:3306/user?serverTimezone=Asia/Shanghai&characterEncoding=utf8&tinyInt1isBit=false"

jdbc_username=root
jdbc_password=123456

echo "===开始从mysql中提取业务数据日期为 $do_date 的数据==="

#sqoop-mysql2hive-appconfig
sqoop import --connect $jdbc_url_dduser --username $jdbc_username --password $jdbc_password --table app_config --hive-overwrite --hive-import --hive-table dd_database_bigdata.ods_app_config --target-dir /warehouse/dd/bigdata/ods/tmp/ods_app_config -m 1 --input-null-string '\\N' --input-null-non-string '\\N'
#sqoop-mysql2hive-content
sqoop import --connect $jdbc_url_ddresource --username $jdbc_username --password $jdbc_password --query "select  n_id,u_id,u_app,app_id,global_id,nm_id,n_type,n_title,n_category,n_source,n_publish_time,n_create_time from news where DATE_FORMAT(n_create_time,'%Y-%m-%d')='$do_date' and 1=1 and \$CONDITIONS " -m 1 --hive-partition-key dt --hive-partition-value $do_date --target-dir /warehouse/dd/bigdata/ods/tmp/ods_content --hive-overwrite --hive-import --hive-table dd_database_bigdata.ods_content --input-null-string '\\N' --input-null-non-string '\\N'


echo "===从mysql中提取日期为 $do_date 的数据完成==="

import时需要注意几点

1.导入到hive表的存储格式需要是textfile格式,注意指定分隔符

2.注意加 -m 1 ,如果不加时,需要指定 --split-by

3.使用--query 时sql where条件语句中必须含有 $CONDITIONS ,此为sqoop的占位符。如果sql使用了引号包裹时,注意转义:\$CONDITIONS  。

4.使用--query时必须加--target-dir  这是因为--query时数据sqoop操作时先存储到hdfs上,这是指定文件临时存放的位置

 例子2 sqoop export

#!/bin/bash
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ]; then
  do_date=$1
else
  do_date=$(date -d "-1 day" +%F)
fi

jdbc_url="jdbc:mysql://xxx:3306/ddbi?serverTimezone=Asia/Shanghai&characterEncoding=utf8"
jdbc_username=root
jdbc_password=123456


echo "===开始从hive结果表中提取数据到mysql日期为 $do_date 的数据==="

echo "===先删除mysql表中日期为 $do_date 的数据==="
sqoop eval --connect $jdbc_url --username $jdbc_username --password $jdbc_password --query "delete from ads_article_share_info where DATE_FORMAT(date_id,'%Y-%m-%d') = '$do_date'"
echo "===完成删除mysql表中日期为 $do_date 的数据==="
echo "===进行hive导入mysql表中日期为 $do_date 的数据==="
sqoop export --connect $jdbc_url --username $jdbc_username --password $jdbc_password --table ads_article_share_info --export-dir /warehouse/dd/bigdata/ads/ads_article_share_info/dt=$do_date --columns "date_id,measure_id,measure_value,biz_id,biz_code,create_time,update_time" --fields-terminated-by '\t' --input-null-string '\\N' --input-null-non-string '\\N'
echo "===完成hive导入mysql表中日期为 $do_date 的数据==="

echo "===完成从hive结果表中提取数据到mysql日期为 $do_date 的数据==="

export时需要注意几点

1.需要从hive表导出到关系型数据库时,hive的表存储格式需要是textfile格式,因为导出其实是以文件形式导出的,如果不是此格式,导出时报错,提示not file。

2.export注意指定--fields-terminated-by分隔符,指的是hive表结构的分隔符

3.sqoop导出hive表分区的数据时,--export-dir指定到分区,比如--export-dir /warehouse/dd/bigdata/ads/ads_article_share_info/dt=2021-11-01

4.sqoop导出到mysql时,需要更新数据有以下几种方式:

        a.可使用--update-key,指定mysql中检验更新的主键,此时注意,多个时可以逗号分隔,但需要注意此字段最好是主键,字段是not null的。例如 :--update-mode allowinsert --update-key stat_date,create_date 。使用时需要加--update-mode (allowinsert,updateonly),指定是检验到仅更新还是可进行新增操作。

        b.如果需要导出到mysql中的表需要含有null字段的作为唯一确定一行数据的情形时,可先删除,再进行export操作。如例子中的情形。

遇到问题

1.步骤二连接数据库测试时报错Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils

2021-09-30 13:55:56,530 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils
        at org.apache.sqoop.manager.MySQLManager.initOptionDefaults(MySQLManager.java:73)
        at org.apache.sqoop.manager.SqlManager.<init>(SqlManager.java:89)
        at com.cloudera.sqoop.manager.SqlManager.<init>(SqlManager.java:33)
        at org.apache.sqoop.manager.GenericJdbcManager.<init>(GenericJdbcManager.java:51)
        at com.cloudera.sqoop.manager.GenericJdbcManager.<init>(GenericJdbcManager.java:30)
        at org.apache.sqoop.manager.CatalogQueryManager.<init>(CatalogQueryManager.java:46)
        at com.cloudera.sqoop.manager.CatalogQueryManager.<init>(CatalogQueryManager.java:31)
        at org.apache.sqoop.manager.InformationSchemaManager.<init>(InformationSchemaManager.java:38)
        at com.cloudera.sqoop.manager.InformationSchemaManager.<init>(InformationSchemaManager.java:31)
        at org.apache.sqoop.manager.MySQLManager.<init>(MySQLManager.java:65)
        at org.apache.sqoop.manager.DefaultManagerFactory.accept(DefaultManagerFactory.java:67)
        at org.apache.sqoop.ConnFactory.getManager(ConnFactory.java:184)
        at org.apache.sqoop.tool.BaseSqoopTool.init(BaseSqoopTool.java:272)
        at org.apache.sqoop.tool.ListDatabasesTool.run(ListDatabasesTool.java:44)
        at org.apache.sqoop.Sqoop.run(Sqoop.java:147)
        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
        at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183)
        at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234)
        at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243)
        at org.apache.sqoop.Sqoop.main(Sqoop.java:252)
Caused by: java.lang.ClassNotFoundException: org.apache.commons.lang.StringUtils
        at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:355)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
        ... 20 more

 缺少commons-lang包,这里我们下载并放到%SQOOP%/lib下

http://mirrors.tuna.tsinghua.edu.cn/apache//commons/lang/binaries/commons-lang-2.6-bin.zip

2.mysql导入到hive报错

2021-10-08 15:40:35,682 ERROR hive.HiveConfig: Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.
2021-10-08 15:40:35,687 ERROR tool.ImportTool: Import failed: java.io.IOException: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf

将$HIVE_HOME/lib下的hive-exec-**.jar 放到sqoop 的lib 下可以解决以下问题。

3.mysql导入到hive报错 HiveConf of name xxx does not exist

应该是没有引用到hive lib下的资源文件,查询了很多资料,所增加环境变量

export HADOOP_CLASSPATH=${HADOOP_CLASSPATH}:/opt/cdh5.7.6/hive-1.1.0-cdh5.7.6/lib/*

这个是linux写法,具体windows怎么做,很疑惑。我尝试将hive lib下的包均放到sqoop lib下,各种尝试后发现不行。最后重新了下hive,莫名成功了。。。。毕竟自己搭建的环境,兼容性没这么好啊。

cd %HIVE_HOME%/bin
hive --service metastore &

4.windows下执行import命令后报错java.lang.ClassNotFoundException: Class tablename not found
执行的命令:

sqoop import --connect "jdbc:mysql://xxx:3306/ddbi?serverTimezone=Asia/Shanghai" --username root --password 123456 --table behavior --hive-import --hive-database dd_database_bigdata --hive-table dwd_base_event_log_his --m 1 --input-null-string '\\N' --input-null-non-string '\\N'


//其中,behavior 是mysql下的一个数据表
报错错误信息:
java.lang.Exception: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class behavior not found

错误原因:
因为在使用sqoop import命令时,生成的java文件会默认产生在当前目录下,而产生的.jar文件和.class文件会默认存放在/tmp/sqoop-/compile下,两者不在同一文件目录下,导致错误。所以,我们需要将java文件,.jar文件和.class文件放在同一目录下。
解决方法:
为了使数据不存放在根目录下,将产生的文件放在xx/tmp下,我们需要切换至//tmp目录下

使用如下命令:

cd D:\\tmp

sqoop import --connect "jdbc:mysql://xxx:3306/ddbi?serverTimezone=Asia/Shanghai" --username root --password 123456 --table behavior --hive-import --hive-database dd_database_bigdata --hive-table dwd_base_event_log_his --m 1 --input-null-string '\\N' --input-null-non-string '\\N' --bindir ./

注意增加 --bindir ./

官方说明:

--bindir <dir>:指定生成的java文件、编译成的class文件及将生成文件打包为JAR的JAR包文件输出路径


执行后结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值