拓扑排序-207. Course Schedule[medium]

题目描述

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.


一共 n 门课,在一个[]里,要先完成右边的才能完成左边的,判断给出的课程是否能完成。


解题思路


拓扑排序,用邻接链表来表示课程,每个节点就是一门课,所以有 n 节点。根据[]来构造这个表graph。例如[0,1],则存在一条边从节点1指向节点0,再用一个数组indegree表示每个节点的入度(这个可以在构造邻接表的时候顺便完成)。


现在,有了入度数组,有了邻接表,就可以开始给它们进行拓扑排序了。每次挑出一个入度为0的节点,将它指向其他节点的边统统删除(对应节点入度--),这里有一点要注意——因为到最后,所有点都可能是入度为0,为了区分处理前后的点,增加一个visited数组,处理之后置为真,然后遍历所有节点,找到入度为0且visited为假的点,进行删边处理。同时还要有一个计数入度为0的节点的计数器cnt,最后,计数器 == n则能完成课程,否则不能。


代码如下


class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
       	vector<vector<int> > graph(numCourses);
	vector<int> indegree(numCourses, 0);
	vector<bool> visited(numCourses, false);

	for (int i = 0; i < prerequisites.size(); i++) {
		pair<int, int> pair1 = prerequisites[i];

		graph[pair1.second].push_back(pair1.first);

		indegree[pair1.first]++;

	}

	int cnt = 0;

	for (int i = 0; i < graph.size(); i++) {
		if (indegree[i] == 0 && !visited[i]) {
			cnt++;
			visited[i] = true;
			for (int j = 0; j < graph[i].size(); j++) {
				indegree[graph[i][j]]--;

			}

			i = -1;
		}
	}

	return cnt == numCourses;
}
};



因为题目就是简单的拓扑排序,因此这里就简略写出解题过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值