在机器学习模型的训练过程中,学习率的选择是一个关键的问题。学习率决定了模型在每次参数更新时所采用的步长大小,直接影响着模型的收敛速度和准确性。然而,固定的学习率可能导致训练过程出现问题,如收敛速度慢、陷入局部极小值等。因此,研究者们提出了一系列自适应学习率调整方法,以解决这一问题。本文将探索机器学习模型中的自适应学习率调整方法。
1. 学习率调整方法概述
学习率调整方法用于在训练过程中动态地调整学习率,以提高模型的性能和收敛速度。常见的学习率调整方法包括固定学习率、学习率衰减、自适应学习率和学习率重启等。
2. 学习率衰减方法
学习率衰减方法通过在训练过程中逐渐减小学习率,以使得模型在训练初期更快地收敛,在训练后期更稳定地搜索最优解。常见的学习率衰减方法包括指数衰减、余弦退火和多项式衰减等。
2.1 指数衰减
指数衰减是一种常见的学习率衰减方法,其数学表达式为: