正整数中1出现的次数

题目描述

求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。

解题思路

考虑将n的十进制的每一位单独拿出讨论,每一位的值记为weight。

1) 个位

从1到n,每增加1,weight就会加1,当weight加到9时,再加1又会回到0重新开始。那么weight从0-9的这种周期会出现多少次呢?这取决于n的高位是多少,看图:

这里写图片描述

以534为例,在从1增长到n的过程中,534的个位从0-9变化了53次,记为round。每一轮变化中,1在个位出现一次,所以一共出现了53次。
再来看weight的值。weight为4,大于0,说明第54轮变化是从0-4,1又出现了1次。我们记1出现的次数为count,所以:
count = round+1 = 53 + 1 = 54

如果此时weight为0(n=530),说明第54轮到0就停止了,那么:
count = round = 53

2) 十位

对于10位来说,其0-9周期的出现次数与个位的统计方式是相同的,见图:

这里写图片描述

不同点在于:从1到n,每增加10,十位的weight才会增加1,所以,一轮0-9周期内,1会出现10次。即rount*10。
再来看weight的值。当此时weight为3,大于1,说明第6轮出现了10次1,则:
count = round*10+10 = 5*10+10 = 60

如果此时weight的值等于0(n=504),说明第6轮到0就停止了,所以:
count = round*10+10 = 5*10 = 50

如果此时weight的值等于1(n=514),那么第6轮中1出现了多少次呢?很明显,这与个位数的值有关,个位数为k,第6轮中1就出现了k+1次(0-k)。我们记个位数为former,则:
count = round*10+former +1= 5*10+4 = 55

3) 更高位

更高位的计算方式其实与十位是一致的,不再阐述。

4) 总结

将n的各个位分为两类:个位与其它位。
对个位来说:

  • 若个位大于0,1出现的次数为round*1+1
  • 若个位等于0,1出现的次数为round*1

对其它位来说,记每一位的权值为base,位值为weight,该位之前的数是former,举例如图:

这里写图片描述

则:
  • 若weight为0,则1出现次数为round*base
  • 若weight为1,则1出现次数为round*base+former+1
  • 若weight大于1,则1出现次数为rount*base+base

比如:

  • 534 = (个位1出现次数)+(十位1出现次数)+(百位1出现次数)=(53*1+1)+(5*10+10)+(0*100+100)= 214
  • 530 = (53*1)+(5*10+10)+(0*100+100) = 213
  • 504 = (50*1+1)+(5*10)+(0*100+100) = 201
  • 514 = (51*1+1)+(5*10+4+1)+(0*100+100) = 207
  • 10 = (1*1)+(0*10+0+1) = 2

5. 完整代码

package JianZhiOffer;

public class NumberOf1Between1AndN_Solution
{

    public static void main(String[] args)
    {
        int n=534;
        int a=NumberOf1Between1AndN_Solution(n);
        System.out.println(a);

    }
    public static int NumberOf1Between1AndN_Solution(int n)
    {
      if(n<1)
            return 0;
      int count=0;
      int base=1;
      int round=n;
      while(round>0)
      {  
         int weight= round%10;
         round/=10;
         count+=round*base;
         if(weight==1)
             count+=n%base+1;
         if(weight>1)
             count+=base;
         base*=10;
      }
        return count;
        }
}
/*
 * 假设count为534,第一次进入while循环后为53,第二次为5,第三次为0,然后便退出。分别对应个位,十位,百位,
 * 如果位数多,依次类推即可
 */
实验结果:214

即: (53+1)+(50+10)+(0+100)=214


  
  
  • 2
  • 3
  • 46. 时间复杂度分析

时间复杂度:

由分析思路或者代码都可以看出,while循环的次数就是n的位数,logn(以10为底),而循环体内执行的操作都是有限次的,所以时间复杂度为O(logn)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值