题目描述
解题思路
考虑将n的十进制的每一位单独拿出讨论,每一位的值记为weight。
1) 个位
从1到n,每增加1,weight就会加1,当weight加到9时,再加1又会回到0重新开始。那么weight从0-9的这种周期会出现多少次呢?这取决于n的高位是多少,看图:
以534为例,在从1增长到n的过程中,534的个位从0-9变化了53次,记为round。每一轮变化中,1在个位出现一次,所以一共出现了53次。
再来看weight的值。weight为4,大于0,说明第54轮变化是从0-4,1又出现了1次。我们记1出现的次数为count,所以:
如果此时weight为0(n=530),说明第54轮到0就停止了,那么:
2) 十位
对于10位来说,其0-9周期的出现次数与个位的统计方式是相同的,见图:
不同点在于:从1到n,每增加10,十位的weight才会增加1,所以,一轮0-9周期内,1会出现10次。即rount*10。
再来看weight的值。当此时weight为3,大于1,说明第6轮出现了10次1,则:
如果此时weight的值等于0(n=504),说明第6轮到0就停止了,所以:
如果此时weight的值等于1(n=514),那么第6轮中1出现了多少次呢?很明显,这与个位数的值有关,个位数为k,第6轮中1就出现了k+1次(0-k)。我们记个位数为former,则:
3) 更高位
更高位的计算方式其实与十位是一致的,不再阐述。
4) 总结
将n的各个位分为两类:个位与其它位。
对个位来说:
- 若个位大于0,1出现的次数为
round*1+1
- 若个位等于0,1出现的次数为
round*1
对其它位来说,记每一位的权值为base,位值为weight,该位之前的数是former,举例如图:
则:
- 若weight为0,则1出现次数为
round*base
- 若weight为1,则1出现次数为
round*base+former+1
- 若weight大于1,则1出现次数为
rount*base+base
比如:
- 534 = (个位1出现次数)+(十位1出现次数)+(百位1出现次数)=(53*1+1)+(5*10+10)+(0*100+100)= 214
- 530 = (53*1)+(5*10+10)+(0*100+100) = 213
- 504 = (50*1+1)+(5*10)+(0*100+100) = 201
- 514 = (51*1+1)+(5*10+4+1)+(0*100+100) = 207
- 10 = (1*1)+(0*10+0+1) = 2
5. 完整代码
package JianZhiOffer;
public class NumberOf1Between1AndN_Solution
{
public static void main(String[] args)
{
int n=534;
int a=NumberOf1Between1AndN_Solution(n);
System.out.println(a);
}
public static int NumberOf1Between1AndN_Solution(int n)
{
if(n<1)
return 0;
int count=0;
int base=1;
int round=n;
while(round>0)
{
int weight= round%10;
round/=10;
count+=round*base;
if(weight==1)
count+=n%base+1;
if(weight>1)
count+=base;
base*=10;
}
return count;
}
}
/*
* 假设count为534,第一次进入while循环后为53,第二次为5,第三次为0,然后便退出。分别对应个位,十位,百位,
* 如果位数多,依次类推即可
*/
实验结果:214
即: (53+1)+(50+10)+(0+100)=214
时间复杂度:
由分析思路或者代码都可以看出,while循环的次数就是n的位数,logn(以10为底),而循环体内执行的操作都是有限次的,所以时间复杂度为O(logn)。