# Pie解题报告

 

My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case:
• One line with two integers N and F with 1 ≤ N, F ≤ 10 000: the number of pies and the number of friends.
• One line with N integers ri with 1 ≤ ri ≤ 10 000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10−3.

Sample Input

3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2

Sample Output

25.1327
3.1416
50.2655

Hint

#include<iostream>
#include<cmath>
using namespace std;
double pi=acos(-1.0); //PI的精确算法。
double a[10005];  //大数组定义在外面好。
int N,F;
bool test(double x) //算法实现函数。
{
int count=0;
for(int i=1;i<=N;++i)
{
count+=int(a[i]/x); //一块能分成几块加到count中。
}
if(count>=F+1)  //count大于等于 F+1，就是满足条件，继续增大x；
return true;
else
return false;

}

int main()
{
int t;
scanf("%d",&t);
while(t--)
{
double sum = 0;
double rad;
scanf("%d%d",&N,&F);
for(int i=1;i<=N;i++)
{
scanf("%lf",&rad);
a[i]=rad*rad*pi;
sum+=a[i];
}
double max = sum / ( F + 1 ); //理论上最大的面积（体积）。
double l = 0.0;
double r = max;
double mid = 0.0;

while(r-l>1e-6)
{
mid=(l+r)/2;
if(test(mid))
{
l=mid;
}
else
r=mid;
}
printf("%.4lf\n",mid);
}
return 0;
}



FAQ | About Virtual Judge | Contact | Open Source Project

03-16 451

03-11 1178

07-22 531

03-21 3586

03-21 312

02-04 208

#### poj 解题报告poj 解题报告poj 解题报告poj 解题报告poj 解题报告poj 解题报告

2009年10月06日 9KB 下载

#### float pie float pie float pie float pie

2008年12月25日 71KB 下载

03-10 4833

07-03 1928