《问题的引出》
看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50
按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次
按此顺序计算需要的次数(A1*(A2*A3)):10X5X50+10X100X50=75000次
所以问题是:如何确定运算顺序,可以使计算量达到最小化。
枚举显然不可,如果枚举的话,相当于一个“完全加括号问题”,次数为卡特兰数,卡特兰数指数增长,必然不行。
《建立递归关系》
子问题状态的建模(很关键):令m[i][j]表示第i个矩阵至第j个矩阵这段的最优解。
显然如果i=j,则m[i][j]这段中就一个矩阵,需要计算的次数为0;
如果i>j,则m[i][j]=min{m[i][k]+m[k+1][j]+p[i-1]Xp[k]Xp[j]},其中k,在i与j之间游荡,所以i<=k<j ;
代码实现时需要注意的问题:计算顺序!!!
因为你要保证在计算m[i][j]查找m[i][k]和m[k+1][j]的时候,m[i][k]和m[k+1][j]已经计算出来了。
观察坐标的关系如图:
所以计算顺序如上右图:相应的计算顺序对应代码为13-15行
m[1][n]即为最终求解,最终的输出想为((A1(A2 A3))((A4 A5)A6))的形式,不过没有成功,待思考...
1 #include < iostream > 2 using namespace std; 3 const int MAX = 100 ; 4 // p用来记录矩阵的行列,main函数中有说明 5 // m[i][j]用来记录第i个矩阵至第j个矩阵的最优解 6 // s[][]用来记录从哪里断开的才可得到该最优解 7 int p[MAX + 1 ],m[MAX][MAX],s[MAX][MAX]; 8 int n; // 矩阵个数 9 10 void matrixChain(){ 11 for ( int i = 1 ;i <= n;i ++ )m[i][i] = 0 ; 12 13 for ( int r = 2 ;r <= n;r ++ ) // 对角线循环 14 for ( int i = 1 ;i <= n - r + 1 ;i ++ ){ // 行循环 15 int j = r + i - 1 ; // 列的控制 16 // 找m[i][j]的最小值,先初始化一下,令k=i 17 m[i][j] = m[i][i] + m[i + 1 ][j] + p[i - 1 ] * p[i] * p[j]; 18 s[i][j] = i; 19 // k从i+1到j-1循环找m[i][j]的最小值 20 for ( int k = i + 1 ;k < j;k ++ ){ 21 int temp = m[i][k] + m[k + 1 ][j] + p[i - 1 ] * p[k] * p[j]; 22 if (temp < m[i][j]){ 23 m[i][j] = temp; 24 // s[][]用来记录在子序列i-j段中,在k位置处 25 // 断开能得到最优解 26 s[i][j] = k; 27 } 28 } 29 } 30 } 31 32 // 根据s[][]记录的各个子段的最优解,将其输出 33 void traceback( int i, int j){ 34 if (i == j) return ; 35 36 traceback(i,s[i][j]); 37 traceback(s[i][j] + 1 ,j); 38 cout << " Multiply A " << i << " , " << s[i][j] << " and A " << s[i][j] + 1 << " , " << j << endl; 39 } 40 41 int main(){ 42 cin >> n; 43 for ( int i = 0 ;i <= n;i ++ )cin >> p[i]; 44 // 测试数据可以设为六个矩阵分别为 45 // A1[30*35],A2[35*15],A3[15*5],A4[5*10],A5[10*20],A6[20*25] 46 // 则p[0-6]={30,35,15,5,10,20,25} 47 // 输入:6 30 35 15 5 10 20 25 48 matrixChain(); 49 50 traceback( 1 ,n); 51 // 最终解值为m[1][n]; 52 cout << m[ 1 ][n] << endl; 53 return 0 ; 54 }