HDOJ/HDU 3715 2-sat+二分 2010年成都赛区

//题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3715

题目:

Problem Description
Here is a procedure's pseudocode:

go(int dep, int n, int m)
begin
output the value of dep.
if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
end

In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
 

Input
There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are a i-1 ,b i-1 and c i-1 (0 ≤ a i-1, b i-1 < n, 0 ≤ c i-1 ≤ 2).
 

Output
For each test case, output the result in a single line.
 

Sample Input
  
  
3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
 

Sample Output
  
  
1 1 2
 

Author
CAO, Peng
 

Source
 

Recommend
zhouzeyong
 

题意就不在多说了

回想起当年在场外围观的那一场惊心动魄的区域赛。。如今一年也快过去了。。

我是否达到了当年去参加那次区域赛的学长们的能力。。每每念及此,都感觉到非常大的压力

当年的学长毕业的毕业,退役的退役,今年终于轮到我们这一届

2009级的站出来了。。


先说说这个题目。

这个题,先开始看到的时候不知到如何下手,后来看到x的取值仅仅就只有1,0两种情况,而且c的取值也仅仅只有0,1,2

三种取值,于是诱导我们想到了判断可行性的2-sat

但是2-sat仅仅只是判断了可行性,但是我们要求的是输出最大深度。

故我们可以去枚举每一个可能的深度。当然如果直接从0到m进行线性的枚举,然后每次tarjan求强联通,肯定会超时超到爆。。。

所以标准的方法是利用二分答案的方法。利用2-sat来验证可行性。这样大大优化了程序的速度。

建图的方法:

令a=0,a'=1,b=0,b'=1

if(c[i]==0)那么a和b必然矛盾,于是连接边:a->b'同理连接b->a'

if(c[i]==1)那么a和b'  a'和b必然矛盾,那么连接,a->b,a'->b',b->a,b'->a'

if(c[i]==2)那么a'和b'必然矛盾,于是:a'->b,b'->a


这样我们就连好了一副图。于是在对着个图进行强连通分量判断就可以AC了。


我的代码:

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<stack>
#define maxn 20005

using namespace std;

int Index,cnt;
int a[maxn],b[maxn],c[maxn];
vector<int>map[maxn];
int belong[maxn],dfn[maxn],low[maxn];
bool used[maxn],instack[maxn];
stack<int>s;

void init(int n)
{
	int i;
	for(i=0;i<=2*n;i++)
		map[i].clear();
	while(!s.empty())
		s.pop();
	memset(used,0,sizeof(used));
	memset(instack,0,sizeof(instack));
	memset(dfn,-1,sizeof(dfn));
	memset(belong,0,sizeof(belong));
	memset(low,0,sizeof(low));
	cnt=0,Index=0;
}

void build_map(int mid,int n)
{
	int i;
	init(n);
	for(i=1;i<=mid;i++)
	{
		if(c[i]==0)
		{
			map[a[i]].push_back(b[i]+n);
			map[b[i]].push_back(a[i]+n);
		}
		if(c[i]==1)
		{
			map[a[i]].push_back(b[i]);
			map[b[i]].push_back(a[i]);
			map[a[i]+n].push_back(b[i]+n);
			map[b[i]+n].push_back(a[i]+n);
		}
		if(c[i]==2)
		{
			map[a[i]+n].push_back(b[i]);
			map[b[i]+n].push_back(a[i]);
		}
	}
}

int min(int a,int b)
{
	if(a>b)
		return b;
	else
		return a;
}

void tarjan(int u)
{
	int i,v;
	Index++;
	dfn[u]=Index;
	low[u]=Index;
	used[u]=true;
	instack[u]=true;
	s.push(u);
	for(i=0;i<map[u].size();i++)
	{
		v=map[u][i];
		if(!used[v])
		{
			tarjan(v);
			low[u]=min(low[u],low[v]);
		}
		else if(instack[v])
		{
			low[u]=min(low[u],dfn[v]);
		}
	}
	if(dfn[u]==low[u])
	{
		cnt++;
		do
		{
			v=s.top();
			s.pop();
			belong[v]=cnt;
			instack[v]=false;
		}
		while(u!=v);
	}
}

bool judge(int n,int m,int mid)
{
	int i;
	build_map(mid,n);
	for(i=0;i<2*n;i++)
		if(dfn[i]==-1)
			tarjan(i);
	for(i=0;i<n;i++)
	{
		if(belong[i]==belong[i+n])
			return false;
	}
	return true;
}

void solve(int n,int m)
{
	int left,right,mid,ans;
	left=0,right=m;
	while(left<=right)
	{
		mid=(left+right)>>1;
		if(judge(n,m,mid))
		{
			ans=mid;
			left=mid+1;
		}
		else
			right=mid-1;
	}
	printf("%d\n",ans);
}

int main()
{
	int t,i,n,m;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&m);
		for(i=1;i<=m;i++)
			scanf("%d%d%d",&a[i],&b[i],&c[i]);
		solve(n,m);
	}
	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值