自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(100)
  • 资源 (1)
  • 收藏
  • 关注

原创 智能航模控制器

多功能航模遥控&图传显示一体机是一款基于ELRS开源协议的高性能航模设备。该产品采用STM32F429IGT6主控,集成ELRS双频段通信(900M/2.4G)、4.3寸高清触摸屏和CNC铝合金霍尔摇杆,实现遥控、图传显示一体化设计。主要亮点包括:支持3km远距离通信、≤10ms低延迟、16位高精度摇杆控制、模块化可扩展架构,以及开源软硬件设计。设备兼容主流ELRS接收机,配备智能频段切换功能,并通过Fusion360优化人体工学外壳,兼顾专业性能和DIY友好性。

2026-02-04 15:01:11 944

原创 RK3588硬核实战:YOLOv11驱动SAR船舶分割,NPU加速全流程落地指南

本文详细介绍了基于RK3588 NPU平台实现YOLOv11驱动的SAR船舶分割全流程方案。主要内容包括:SAR影像数据预处理(噪声去除、格式规范化)、YOLOv11轻量化模型训练与优化、模型转换(PyTorch→ONNX→RKNN)适配RK3588 NPU硬件加速。通过数据增强、模型压缩和NPU专属优化,在嵌入式设备上实现了高精度实时SAR船舶分割,为海洋监测等场景提供了高效的边缘计算解决方案。文章提供了完整的代码实现和实操指南,助力开发者快速落地应用。

2026-01-16 17:11:56 848

原创 从训练到部署:香橙派atlas310 YOLOv11 实现 SAR 船舶高效分割全流程实操指南

本文提供了基于YOLOv11实现SAR船舶高效分割的全流程实操指南。首先介绍了SAR影像数据预处理的关键步骤,包括数据集获取、YOLOv11格式转换和SAR专属增强方法。随后详细讲解了YOLOv11模型训练过程,涵盖环境准备、模型选型和两种训练方式。最后指导用户分析训练结果并保存最优模型,为后续嵌入式部署做好准备。该方案特别针对香橙派等低成本嵌入式设备优化,实现了从数据到部署的完整落地流程,使边缘设备也能胜任高精度SAR船舶分割任务。

2026-01-16 16:48:07 889

原创 告别算力依赖!华为昇腾Atlas310P本地部署大模型:基于vLLM-Ascend的全流程实操+性能实测

华为昇腾Atlas310P本地部署大模型实战指南 本文详细介绍了基于华为昇腾Atlas310P NPU卡和vLLM-Ascend插件实现大模型本地部署的全流程方案。文章首先分析了国产化高能效NPU卡在本地部署中的优势,包括轻量化、高性价比和数据隐私保护等特性。随后提供了详细的软硬件环境配置要求,并分步骤讲解了从安装昇腾CANN套件、搭建Python环境到实际运行Llama-2-7B模型的完整过程。性能实测部分展示了该方案在推理延迟和吞吐量方面的优异表现,并验证了多种主流开源模型的适配情况。该方案为开发者提供

2026-01-15 16:18:39 944

原创 7款Flux-LoRA风格模型全解析:一键解锁动漫、迪士尼、写实等AI绘画神技

XLabs-AI团队推出的Flux-LoRA模型合集为AI绘画提供了7种专业风格解决方案,包括日式动漫、艺术插画、迪士尼童话、拟人角色、Midjourney V6平替、照片级写实和壮阔景观。每款模型都具备独特的风格特点,如动漫LoRA精准还原超大眼和鲜艳色彩,Disney LoRA完美复刻圆润角色轮廓和温暖色调。这些模型操作简单,只需加载对应权重即可获得专业效果,并附有详细提示词案例指导创作,覆盖从角色设计到场景构建的多样化需求,是提升AI绘画质量的实用工具包。

2026-01-12 23:10:23 1005

原创 香橙派AI Pro 20T部署DeepSeek:打造本地离线语音助手,实现语音交互自由!

本文介绍了在香橙派AI Pro 20T开发板上部署DeepSeek-R1-Distill-Qwen-1.5B模型并集成语音功能,打造本地离线语音助手的完整方案。通过升级CANN环境至8.0版本,安装MindSpore框架及语音识别(ASR)、语音合成(TTS)相关依赖,实现了"语音输入→模型推理→语音输出"的全流程交互。该方案利用开发板20TOPS算力的NPU加速,无需联网即可完成语音问答、指令响应,适用于智能家居控制、离线教学等场景。文章详细提供了硬件清单、软件配置步骤及核心代码实现,

2026-01-09 21:33:40 1283 2

原创 Atlas200DK 部署 yolov11 调用海康威视摄像头实现实时目标检测

本文介绍了在华为Atlas200DK边缘计算设备上部署yolov11模型,并连接海康威视摄像头实现实时目标检测的方案。主要内容包括:1) Atlas200DK硬件配置和系统环境准备;2) yolov11模型转换为昇腾专用OM格式;3) 海康威视摄像头的激活与网络配置;4) RTSP视频流接入方法;5) 代码适配修改和常见问题解决方案。该方案充分利用了Atlas200DK的AI推理能力,通过模型转换和网络配置,实现了对海康威视摄像头视频流的实时目标检测。

2026-01-09 21:03:36 889

原创 零基础小白必看的ComfyUI核心功能全攻略:放大/重绘/LoRA/ControlNet一次掌握

《零基础ComfyUI四大核心功能速成指南》摘要:本文为AI绘画新手提供ComfyUI入门教程,重点讲解四大实用功能:1)图片高清放大(基础工作流+Ultimate Upscale分块处理);2)局部重绘(手动/自动蒙版+蒙版加工节点);3)LoRA应用(单模型加载+多模型Stacker整合);4)ControlNet控制(单/多重控制工作流)。教程通过案例演示如何串联这些功能完成复杂创作,强调理解节点连接逻辑是关键。150字

2026-01-03 21:47:46 938

原创 AIGC本地搭建避坑指南!基础配置要求+我的主机清单全分享

AIGC本地搭建避坑指南 核心配置要求: 显卡:显存8G是底线,16G更佳 内存:32G起步,64G更流畅 推荐配置清单: CPU:AMD Ryzen9 7950X 显卡:RTX4060Ti 16G 内存:64G DDR5 硬盘:1TB NVMe SSD 避坑建议: 优先选择官方安装服务 新手可考虑定制整机 注意硬件兼容性和售后保障 这套配置实测能流畅运行Stable Diffusion等AI软件,适合AIGC入门用户参考。

2026-01-03 21:40:03 781

原创 告别复杂配置!ComfyUI新手全攻略:从安装到首图生成一步到位

《ComfyUI新手全攻略:从安装到首图生成》介绍了这款基于节点的开源AI绘图工具,强调其模块化设计和高可控性优势。文章详细说明了硬件配置要求,重点推荐NVIDIA显卡+16GB内存+SSD的组合。安装指南推荐新手使用桌面版或便携版,并提供了国内镜像设置建议。首次运行教程包含模型安装、界面操作和参数调整说明,帮助用户快速生成第一张AI图像。文章还提供了显存不足等常见问题的解决方案,建议读者参考官方文档和社区获取更多支持。

2026-01-03 21:33:33 1381

原创 Docker 一键搭建 n8n 工作流引擎及升级指南

本文详细介绍使用Docker一键部署开源工作流引擎n8n的方法。通过Docker Compose实现环境隔离、数据持久化和轻松升级,零基础用户也能快速搭建。主要内容包括:Docker环境准备、docker-compose.yml配置详解、n8n初始化设置、安全加固方法、版本升级指南及常见问题解决方案。n8n支持2000+应用集成,可视化拖拽即可构建自动化工作流,适用于开发、运维、运营等多个场景。文中提供完整的配置文件和详细注释,帮助用户10分钟内完成部署并实现工作流自动化。

2026-01-02 22:24:38 958

原创 爆火!Atlas200 AI边缘计算实战:手把手搭建语音控制灯光系统(软硬件全解析)

摘要: 本文详细介绍基于华为Atlas200开发板的AI语音控制灯光系统实现方案。系统采用边缘计算架构,通过LD3320语音模块采集指令,Atlas200进行本地语音识别(支持开关/调光指令),经GPIO控制RGB灯带。硬件部分包含Atlas200、语音模块、ULN2003驱动等连接方案;软件部分涵盖MindStudio环境配置、UART串口通信、PWM调光逻辑及AI模型部署优化(准确率可达98%)。项目实现300ms内快速响应,断网可用,适合智能家居入门开发,并提供颜色控制、手机联动等扩展方向。

2026-01-02 22:07:30 1182

原创 低成本开源!ESP32轮腿机器人实战

摘要:本文介绍了一款基于ESP32-S3的低成本开源轮腿机器人项目LeTian-robot2。该项目实现了自平衡、身高调节和无线控制功能,计划后续添加语音控制和跳跃功能。硬件采用ESP32-S3主控、4010无刷电机和MPU6050传感器,软件基于ESP32 RTOS和SimpleFOC算法。项目完全开源,提供PCB设计图、3D模型、代码和BOM清单,大大降低了制作门槛。目前V3.0版本正在优化中,未来将持续迭代功能,是学习机器人控制与制作的理想选择。

2026-01-02 21:51:28 873

原创 宇树机器人又刷第一!具身智能靠强化学习解锁直立行走与快速奔跑

宇树机器人H1凭借强化学习技术,在2025年世界人形机器人运动会夺得四项金牌,峰值速度突破5m/s。其核心技术在于通过仿真环境中的强化学习训练,分阶段解锁步态能力:先简化模型生成基础步态,再通过策略蒸馏实现奔跑优化。测试验证采用"仿真-场景-赛事"三级体系,最终在复杂赛场上展现卓越性能。这一突破证明强化学习是具身智能运动能力突破的关键,未来结合多模态大模型,机器人将具备更强的环境适应与决策能力。

2025-12-31 20:56:38 835

原创 RK3588 + YOLOv8 田块分割实战指南:从环境搭建到部署落地全流程

摘要 本文详细介绍了基于RK3588芯片和YOLOv8模型的田块分割系统开发全流程。主要内容包括:1) 环境搭建,分别在PC端配置训练环境(Ubuntu+PyTorch+YOLOv8)和RK3588端配置部署环境(RKNN Toolkit2);2) 数据集准备与模型训练,使用LabelMe标注农田图像并转换为YOLO格式,训练YOLOv8分割模型;3) 模型转换,将训练好的ONNX模型通过RKNN Toolkit2转换为RK3588专用的RKNN格式,支持NPU加速。该系统利用RK3588的6TOPS算力实

2025-12-31 20:37:41 1276

原创 实战|香橙派+YOLOv8 低成本搞定田块分割:从环境搭建到边缘推理全流程

本文介绍了基于香橙派和YOLOv8的低成本田块分割方案,涵盖从环境搭建到边缘推理全流程。主要内容包括: 硬件选型:采用香橙派(Orange Pi 5)搭配YOLOv8轻量化模型,实现200元以内的低成本边缘计算解决方案。 环境配置:详细说明ARM架构下的系统部署和依赖安装方法,重点解决PyTorch等库的ARM版本兼容问题。 数据准备:提供从LabelMe标注到YOLO格式转换的完整代码,确保数据集适配分割任务。 训练策略:给出本地GPU训练和香橙派CPU训练两种方案,并推荐优先采用本地训练+边缘推理的流程

2025-12-31 20:26:17 866

原创 实战|华为Atlas200 + YOLOv8 搞定田块分割:从环境搭建到推理全流程通关

摘要: 本文详细介绍了基于华为Atlas200边缘AI芯片和YOLOv8模型的田块分割全流程实现方案。首先解析了Atlas200的硬件优势与YOLOv8的分割特性,随后分步指导环境搭建(包括本地GPU训练端和Atlas200推理端的CANN工具链配置)。通过LabelMe标注数据转换、YOLOv8模型训练与评估,最终完成模型适配Atlas200的部署。该方案解决了传统农业分割任务在边缘端的性能与部署难题,为精准农业提供高效技术路径,文中包含完整代码和避坑指南,具备较强实操性。

2025-12-31 20:11:34 826

原创 崩溃!用 ComfyUI 生成的图,竟和我梦中的场景一模一样...

摘要: 作者通过ComfyUI成功复刻梦中场景,利用LoRA和ControlNet两大技术稳定生成日式和服小姐姐图像和视频。LoRA负责定制人物风格,ControlNet精准控制姿态动作,避免崩图。操作步骤包括:选择基础模型和LoRA素材、设置参数、使用ControlNet控制姿态、微调优化。进阶部分介绍视频生成方法,强调帧间一致性。文章还列出新手常见雷区及解决方案,分享AI将梦境转化为现实的惊喜体验。(149字)

2025-12-28 21:39:28 856

原创 ESP32声纹识别控制家电:手把手搭建你的“语音密码”智能家

本文介绍了如何利用ESP32开发板搭建一套低成本声纹识别家电控制系统。系统采用四层架构:感知层(麦克风采集语音)、核心控制层(ESP32处理)、执行层(继电器控制家电)和后台模型层(声纹识别)。硬件部分详细说明了ESP32、麦克风模块和继电器的接线方法,强调安全注意事项。软件方面展示了核心代码逻辑,包括语音采集、声纹模型部署和继电器控制,使用TensorFlow Lite实现轻量化声纹识别。该系统可实现1秒内完成声纹验证和家电控制,为智能家居提供了一种安全便捷的解决方案。

2025-12-26 23:19:58 1005

原创 TinyML实战封神!在ESP32-S3上部署ECG异常检测模型,手把手打通从硬件到软件全链路

本文介绍了在ESP32-S3开发板上部署ECG异常检测TinyML模型的全流程方案。通过AD8232传感器采集心电信号,采用轻量级CNN模型进行本地化实时检测,实现低延迟(<10ms)和低功耗(mA级)的可穿戴医疗监测。文章详细讲解了硬件选型(ESP32-S3+AD8232)、软件工具链搭建(TensorFlow Lite+ESP-IDF)、数据处理(MIT-BIH数据集预处理)、模型训练与量化(轻量级CNN+INT8量化)以及嵌入式部署等关键技术环节。该方案为可穿戴医疗设备开发提供了完整的TinyM

2025-12-26 22:50:41 930

原创 【HarmonyOS实战】30分钟上手人脸识别开发!从环境搭建到部署全流程拆解

本文详细介绍了基于HarmonyOS的人脸识别应用开发全流程,包括环境搭建、架构设计和核心代码实现。主要内容涵盖: 开发环境配置:安装DevEco Studio 4.0+,配置ML Kit人脸检测依赖,准备真机或模拟器测试环境 分层架构设计:采用表现层、业务逻辑层、核心服务层和基础工具层的四层架构,确保代码可维护性 关键代码实现: 权限申请模块处理摄像头和存储权限 人脸检测服务调用ML Kit API进行人脸特征提取 提供核心功能代码片段 完整开发流程:从环境准备到代码实现再到应用部署的全链路指导 本文为H

2025-12-26 22:16:57 932

原创 Claude Code对接Ollama小模型全崩了?开发者实测踩坑全记录

文章摘要: 开发者实测发现Claude Code对接Ollama小模型(如Llama 3 8B)存在严重适配问题,表现为代码生成错误、上下文断层、频繁卡死及功能缺失。核心原因在于接口协议不匹配、小模型能力不足及资源调度冲突。解决方案包括:1)升级至Ollama大参数模型(如70B);2)通过适配层统一接口与上下文;3)限制小模型仅处理简单任务。建议开发者优先考虑模型适配性,避免因追求低成本而影响效率。(149字)

2025-12-24 22:48:47 1461

原创 Claude Code Token烧钱预警!90%的成本浪费都能这样省

摘要: Claude Code的高Token消耗问题已成为开发者痛点,90%成本浪费在无关内容上。核心原因包括:1) 每次请求的固定系统提示成本;2) 冗余文件、长聊天历史等无效信息;3) 不当的模型选择与任务管理。解决方案:1) 定期清理对话历史;2) 仅提供必要代码片段;3) 关闭闲置工具;4) 按需选择Sonnet等性价比模型;5) 拆分任务分步执行;6) 利用官方Prompt缓存等新功能。通过精简上下文和精准控制,可节省80%成本,同时提升响应速度和质量。建议定期检查消费情况,做好版本控制,将Tok

2025-12-24 22:34:08 1182

原创 YOLOv8屏幕划痕检测与香橙派边缘推理全流程实践

本文介绍了一种基于YOLOv8的轻量化屏幕划痕检测方案,并将其部署到香橙派开发板实现边缘实时推理。主要内容包括:1)构建1000张屏幕划痕数据集并进行数据增强;2)在PC端使用YOLOv8-nano模型进行训练,通过150轮迭代达到90%以上mAP;3)将训练好的模型部署到香橙派5开发板,实现25FPS以上的实时检测。该方案兼顾精度与效率,适用于手机、车载等各类屏幕的自动化质检场景。文中详细介绍了数据集构建、模型训练、轻量化优化及边缘部署的全流程实现方法。

2025-12-24 22:26:41 1016 2

原创 YOLOv11训练NEU-DET钢材缺陷数据集并部署香橙派推理全流程

本文介绍了基于YOLOv11的钢材缺陷检测解决方案,包括NEU-DET数据集处理、模型训练优化及香橙派部署全流程。首先对NEU-DET数据集进行预处理和格式转换,配置PC端训练环境;然后选择YOLOv11-nano模型进行100轮训练,生成最佳权重;最后将模型导出为ONNX格式并量化,适配香橙派RK3588芯片的NPU加速。该方案实现了工业场景下轻量化缺陷检测,平衡了精度与边缘设备性能需求。

2025-12-24 22:20:57 759

原创 双能突围!能源高效型模型压缩+碳足迹追踪,解锁数据中心与农业AI新价值

摘要: 本文提出一种"能源高效型模型压缩算法+碳足迹追踪系统"双能解决方案,针对数据中心高能耗与农业AI轻量化需求,实现节能减碳与精准识别的双重突破。通过分层混合量化、能耗感知剪枝等技术,模型体积压缩75%,推理能耗降低40%;配套碳足迹系统实现训练全流程碳排放监测与优化。在农业无人机病虫害识别场景中,压缩模型(<10MB)实现91.5%准确率,推理速度<0.3秒,延长无人机续航20%。该方案为毕业设计提供"算法-减碳-落地"完整路径,可扩展至工业检测等多

2025-12-23 22:13:38 708 1

原创 Chromebook也能跑!GPT-4o驱动的个性化学习路径生成器,初中数学推荐准确率达89%

摘要: 一款基于GPT-4o微调与认知诊断模型的个性化学习路径生成器,可在普通Chromebook上流畅运行,为初中数学提供89%准确率的习题推荐。该系统通过分析解题视频中的行为表情数据,结合强化学习动态调节难度,快速识别薄弱知识点(提速2.3倍)。在洋葱学院试点中,学生主动学习时长增加40分钟/周,挫败感显著降低。其轻量化设计(WebAssembly封装)和本地数据加密方案,使个性化教育能无门槛覆盖各类学校,同时为教师减少70%重复工作。未来将扩展至多学科全场景学习,推动教育公平发展。

2025-12-23 21:55:30 977

原创 14.7MB轻量模型!NVIDIA Jetson边缘设备解锁工厂设备故障预警新方案

NVIDIA推出14.7MB轻量级AI模型,专为Jetson Orin Nano边缘设备设计,实现工厂设备故障预警。该系统采用知识蒸馏技术,将YOLOv9模型压缩为MobileNetV3,结合振动、红外、声学多模态传感器数据,实现故障提前4小时预警,准确率达86.2%。部署仅需2小时,功耗15W,已在汽车生产线验证可减少37%停机时间,年节省超200万元。未来计划扩展更多设备类型和视觉检测功能,推动制造业智能化升级。

2025-12-23 21:50:53 587

原创 秒级筛查+94.7%精准!华为Atlas 200 DK边缘设备解锁糖尿病视网膜病变检测新范式

基层医疗面临的眼底疾病诊断慢、专业资源缺难题,正被边缘智能技术快速破解!糖尿病视网膜病变作为致盲风险极高的慢性眼病,早期精准筛查是挽救视力的关键。今天,我们聚焦一款部署于华为Atlas 200 DK边缘设备的糖尿病视网膜病变检测系统,从技术内核到落地实操,拆解如何用边缘AI实现“低成本、高高效、易部署”的医疗筛查方案。

2025-12-23 21:40:40 736

原创 基于CH32V307VCT6的智能电子负载与容量测试仪设计(毕业设计)

本文基于国产RISC-V芯片CH32V307VCT6设计了一款高性能电子负载与容量测试集成设备。该方案采用144MHz主频、硬件FPU的CH32V307作为主控,结合高速ADC(1MSPS)和多通道PWM,实现了CC/CV/CR/CP四象限电子负载功能,并集成高精度容量测试模块。通过INA226电流检测芯片和精密采样电路,电压/电流测量精度达±0.05%。系统采用硬件+软件双层保护机制,响应时间<100ms,支持1.5Mbps高速通信。相比传统方案,具有性能高(响应时间<20ms)、成本低(&l

2025-12-22 23:52:00 679

原创 AI编程革命:2025年顶尖编程助手如何重塑软件开发

2025年AI编程助手已从辅助工具发展为软件开发流程的核心,92%的专业开发者将其纳入工作流。主流工具如Trae、GitHub Copilot等实现了全链路支持,从需求分析到部署迭代。然而AI编程仍面临安全漏洞(20%代码含"幽灵包")、需求失真(80%完成率但细节缺失)和技能退化(41%初级开发者无法独立编码)三大挑战。最佳实践建议:定位AI为协作者而非替代者,建立规范驱动流程,坚守安全底线,保持核心技能训练。人机协同将成为未来软件开发的主流范式。

2025-12-22 22:26:32 1282

原创 Claude登不上、没账号?国内免费替代方案!用claude-code-router秒解锁AI编码

无需Claude账号、不用科学上网,通过就能在国内免费使用AI编码工具!配置简单,支持Kimi、通义千问等主流模型,完全替代Claude Code的核心功能。不管是日常编码、写测试用例,还是解决技术难题,都能轻松应对。如果配置过程中遇到问题,欢迎在评论区留言,一起交流避坑~ 赶紧试试这个方案,让AI编码效率翻倍!

2025-12-21 13:25:44 1412

原创 Atlas 200I DK A2 CANN算法优化实战:从环境搭建到算子提速90%

本文详细介绍了Atlas 200I DK A2开发板的算法优化全流程,涵盖环境搭建、算子开发和性能优化三大核心环节。通过标准化环境配置(适配CANN 6.0+MindStudio 7.0)、多模态融合算子开发示例和硬件资源监控工具使用,帮助开发者实现90%的性能提升。文章特别强调版本匹配、芯片指定等关键细节,并提供了工业级合格指标参考,为边缘AI应用落地提供实用指导。

2025-12-20 19:16:48 1269

原创 告别凭感觉!上传录音,智能体10分钟让销售话术精准升级

摘要:大模型技术为销售话术优化带来革命性突破。传统模式存在经验难复制、复盘低效等痛点,而基于AI的智能分析系统只需上传沟通录音,10分钟内即可完成语音转写、多维度分析(逻辑/情绪/异议处理等),并生成个性化优化方案。系统融合语音识别、知识库检索和大模型推理能力,支持多场景适配与热词定制,实现从"经验驱动"到"数据智能驱动"的转变,让每次沟通都成为话术优化的素材,显著提升销售团队整体能力。

2025-12-20 13:29:41 908

原创 告别“强装微笑”!Transformer让员工情绪管理与微笑服务双向奔赴

《告别"强装微笑":Transformer技术重构员工情绪管理》 摘要:服务行业员工长期面临"情绪劳动"困境,传统管理模式难以应对。基于Transformer架构的AI技术通过四大模块实现创新突破:1)多模态实时情绪感知系统,整合语音、文本、面部数据,实现92.45%的情绪识别准确率;2)个性化情绪疏导工具,即时生成调节方案和沟通话术;3)沉浸式AI训练场景,将培训周期从6周缩短至2.6周;4)数据驱动的管理闭环,量化情绪管理ROI。实践表明,该技术可降低人力成本30

2025-12-20 13:11:57 1091

原创 告别“签到刺客”!人脸识别让打工人/学生党/会议人爽到飞起

摘要: 人脸识别签到技术彻底改变了传统签到的低效体验。在会议场景中,参会者1秒即可完成签到,避免排队拥堵;课堂上精准识别杜绝代签,老师可一键查看考勤;职场中解决指纹打卡难题,手汗、干燥均不影响识别。该技术依托三大核心:前端小程序(信息管理+消息提醒)、边缘硬件(1秒识别+离线工作)、后端服务(数据统计+规则定制),实现全场景智能化管理。从“签到刺客”到“秒过通关”,科技不仅提升效率,更重塑了工作学习的生活方式。

2025-12-20 12:55:08 1044

原创 刷脸无处不在?揭秘人脸识别背后的软硬件黑科技

晨起刷脸解锁手机,通勤刷脸过闸机,购物刷脸完成支付,甚至取快递都能“刷脸秒取”……不知不觉中,人脸识别技术已经渗透到我们生活的方方面面。当我们习以为常地完成“刷脸”动作时,很少有人会思考:这短短1秒内,机器到底是如何精准“认出”我们的?其实,每一次顺畅的刷脸体验,都是硬件设备与软件算法协同作战的结果。今天,我们就来深度拆解人脸识别背后的软硬件黑科技。

2025-12-20 12:38:30 1334

原创 四大顶流蛋白质预测模型实战指南:从部署到测试全流程解锁

本文提供了四大主流蛋白质预测模型(ESM2、ScanNet、RFdiffusion、RoseTTAFold-All Atom)的实战部署指南。ESM2擅长序列分析,ScanNet专注于结合位点预测,RFdiffusion用于蛋白质设计,RoseTTAFold支持全原子预测。文章详细介绍了各模型的核心优势、跨平台部署步骤(包括环境配置、依赖安装和权重下载)以及常见问题解决方案,涵盖Windows和Linux系统。通过量化优化、虚拟环境管理等技巧,帮助用户高效部署这些前沿AI工具,为蛋白质结构预测和设计提供实用

2025-12-18 23:00:57 1076

原创 误诊率高?多模态深度学习撕开抑郁症的“隐形面具”| 最新技术综述与落地展望

摘要:抑郁症早期检测面临临床访谈主观性强、漏诊率高等痛点。多模态深度学习通过融合文本、语音、图像及生理信号等互补信息,显著提升检测准确率至80%以上。核心技术包括单模态特征提取和多模态融合策略(早期/中期/晚期融合),其中中期融合效果最优(准确率88.6%)。当前挑战集中于数据稀缺、模型可解释性及临床落地等问题,未来可通过联邦学习、可解释AI和轻量化模型等方向突破。该技术有望改变传统抑郁诊断模式,实现更客观、精准的早期筛查。

2025-12-17 22:46:08 561

原创 告别照护焦虑!AI智能照护系统,让独居父母安全有“医”靠(附架构图+搭建指南)

【AI智能照护系统解决方案】针对独居老人健康管理痛点,提出融合物联网、AI智能体和健康知识库的智能照护方案。系统通过传感器实时监测老人体征和环境数据,AI中枢自动分析并触发预警,实现用药提醒、跌倒报警等核心功能。文章详细拆解了系统架构(含硬件感知层与软件决策层),提供从需求分析、设备选型到安装调试的完整搭建指南,并分享真实应用案例。关键提醒包括:优先选择易操作设备、确保系统兼容性、注重老人接受度等。该方案既能24小时守护老人健康,又能缓解子女照护焦虑,让科技为老年生活提供有温度的保障。

2025-12-17 21:16:07 1201

flux RealismLora.safetensors

XLabs-AI 团队在 Hugging Face 平台上推出了一款创新性产品——Flux-LoRA 模型合集。

2026-01-12

Atlas200DK车牌识别系统(MCU+NPU+Sensor+无线+电源)方案设计

本方案基于Atlas200DK开发板,构建集图像采集(Sensor)、智能计算(NPU)、时序控制(MCU)、数据传输(无线)和供电保障(电源)于一体的车牌识别系统。系统核心逻辑为:Sensor采集道路车辆图像,经预处理后传输至NPU进行车牌检测与识别,MCU负责各模块时序协调与状态监控,识别结果通过无线模块上传至后端平台,电源模块为全系统稳定供电。以下为详细的系统方案图、模块交互图及说明。

2026-01-03

一个ESP32控制加热台

一个ESP32控制加热台的代码,通过PID控制MOS管,通过I2C控制OLED显示状态,并通过旋转编码器按钮进行控制。

2026-01-03

一个电子负载前端控制界面

通过前端界面和python控制串口给电子负载传输指令和获取状态

2026-01-03

ComfUI部署问题汇总及解决办法

本文档汇总了ComfUI(Comfy User Interface,一款常用的AI绘图流程化交互工具)部署过程中常见的各类问题,涵盖环境配置、依赖安装、启动运行、功能适配等核心环节,每个问题均提供详细的现象描述与分步解决办法,助力快速排查部署故障。

2026-01-03

ESP32轮腿机器人v3代码

ESP32物联网开发实战项目

2026-01-02

n8n docker安装配置文件

n8n docker安装配置文件

2026-01-02

Atlas200 AI边缘计算实战:手把手搭建语音控制灯光系统

Arduino智能硬件开发实战项目

2026-01-02

ESP32轮腿机器人v3打印件

ESP32物联网开发实战项目

2026-01-02

ESP32轮腿机器人3d模型v3

ESP32物联网开发实战项目

2026-01-02

ESP32语音控制系统

# ESP32语音控制系统 这个项目使用ESP32开发板实现了一个基于语音识别的控制系统,通过I2S麦克风采集声音,使用WiFi连接后台模型进行声纹识别和指令解析,并控制继电器执行相应动作。 ## 功能概述 1. **音频采集**:使用I2S接口连接麦克风,采集高质量的音频数据 2. **语音识别**:将采集到的音频数据发送到后台服务器进行声纹识别和指令解析 3. **权限控制**:只有通过声纹验证的用户才能控制系统 4. **设备控制**:根据解析出的指令控制最多4个继电器 ## 硬件需求 - ESP32开发板 - I2S麦克风模块 - 继电器模块(最多4个) - 杜邦线若干 ## 硬件连接 ### I2S麦克风连接 - WS (Word Select) → ESP32 GPIO 15 - SCK (Serial Clock) → ESP32 GPIO 14 - SD (Serial Data) → ESP32 GPIO 32 - VCC → 3.3V - GND → GND ### 继电器连接 - 继电器1 → ESP32 GPIO 25 - 继电器2 → ESP32 GPIO 26 - 继电器3 → ESP32 GPIO 27 - 继电器4 → ESP32 GPIO 33 - VCC → 5V (或根据继电器模块要求) - GND → GND ## 软件配置 1. 修改`config.h`文件中的WiFi信息: ```cpp #define WIFI_SSID "你的WiFi名称" #define WIFI_PASSWORD "你的WiFi密码" ``` 2. 修改服务器地址和API密钥: ```cpp #define SERVER_URL "http://你的服务器地址/api/voice" #def

2025-12-26

ESP32-S3 ECG信号采集与分类系统

# ESP32-S3 ECG信号采集与分类系统 本项目实现了在ESP32-S3上完整的ECG信号处理流程,包括信号采集、预处理、模型推理和结果输出。 ## 系统架构 系统主要包含以下几个模块: 1. **信号采集模块**:使用ADC采集ECG信号 2. **信号预处理模块**:对原始ECG信号进行滤波、微分等预处理 3. **模型推理模块**:使用TensorFlow Lite Micro进行ECG分类 4. **结果输出模块**:输出分类结果和概率 ## 硬件连接 - ECG传感器模拟输出 -> ESP32-S3 GPIO36 (ADC1_CH0) - ECG传感器参考地 -> ESP32-S3 GND - ECG传感器电源 -> ESP32-S3 3.3V ## 编译与烧录 1. 安装ESP-IDF开发环境 2. 克隆或下载本项目代码 3. 在项目根目录运行: ``` idf.py build idf.py -p <PORT> flash monitor ``` 其中 `<PORT>` 是ESP32-S3连接的串口 ## 模型集成 本项目使用TensorFlow Lite Micro框架进行模型推理。要将新的tflite模型集成到项目中: 1. 将训练好的模型转换为量化模型(int8) 2. 使用xxd工具或TensorFlow提供的脚本将模型转换为C数组 3. 替换 `main/ecg_model_data.c` 中的模型数据 4. 根据需要更新 `main/model_handler.c` 中的输入输出张量处理代码 ## 系统参数 - 采样率:250Hz - 采样精度:12位ADC - 滤波器:0.5-40Hz带通滤波器 - 模型输入:300个采样点的心跳周期 - 模型输出:5种ECG分类(正常、房颤、房扑、

2025-12-26

基于Flask和face-recognition库开发的人脸识别服务,提供人脸特征提取、一比一验证、一比N搜索和人脸管理功能

# 人脸识别API服务 基于Flask和face_recognition库开发的人脸识别服务,提供人脸特征提取、一比一验证、一比N搜索和人脸管理功能。 ## 功能特性 - 人脸特征提取 - 人脸注册(添加到数据库) - 一比一人脸验证 - 一比N人脸搜索 - 人脸记录管理(查看、删除) ## 系统要求 - Python 3.7+ - pip ## 安装步骤 1. 克隆项目到本地 2. 安装依赖 ```bash pip install -r requirements.txt ``` 3. 运行服务 ```bash python run.py ``` 服务将在 http://localhost:5000 启动 ## API接口说明 ### 1. 提取人脸特征 **接口地址:** `POST /api/extract` **请求参数:** - image: 图片文件(表单数据) **返回示例:** ```json { "success": true, "image_path": "uploads/20230801120000_test.jpg", "encoding": "[0.123, 0.456, ...]" } ``` ### 2. 添加人脸到数据库 **接口地址:** `POST /api/add_face` **请求参数:** - image: 图片文件(表单数据) - name: 姓名(表单数据) - description: 描述信息(表单数据,可选) **返回示例:** ```json { "success": true, "face_id": 1, "message": "人脸添加成功" } ``` ### 3. 一比一人脸验证 **接口地址:** `POST /ap

2025-12-26

comfyui整合包Wan视频编辑V5下载.txt

comfyui整合包Wan视频编辑V5下载.txt

2025-12-11

wan2.2-i2v-rapid-aio-gguf-example.json

一、工作流概述 wan2.2-i2v.json 是适配 ComfyUI 的轻量型图生视频(Image to Video,简称 i2v)专用工作流,基于 Wan2.2 视频生成模型开发,主打 “轻量化、易上手、高适配”,聚焦核心图生视频能力,删减冗余扩展节点,适合新手快速掌握 Wan2.2 模型的基础使用,也适配低算力设备(如 8GB 显存 GPU)快速生成短视频素材。 核心特性: 仅保留图生视频核心链路,无冗余节点,加载速度快; 预设基础参数模板,新手无需大幅调整即可生成; 适配 Wan2.2 基础版模型,显存占用比 “大一统” 版本降低 20%; 支持输出 MP4/GIF 格式,满足基础创作需求。 二、前置准备 1. 环境要求(新手友好版) 组件 最低要求 推荐配置 ComfyUI v0.1.1+ v0.2.0+ Python 3.9.x/3.10.x 3.10.12 GPU 显存 6GB(开启低显存模式) 8GB+(常规生成) 系统 Windows 10/11(优先) Windows 11/Linux 依赖 预装 CUDA 11.8+(NVIDIA) 预装 CUDA 12.1+

2025-12-11

AIO-V10大一统图生视频-Wan2.2.json

AIO-V10 大一统图生视频 - Wan2.2.json 工作流使用说明 一、工作流概述 本工作流(AIO-V10 大一统图生视频 - Wan2.2.json)是适配 ComfyUI 的图生视频专用工作流,基于 Wan2.2 视频生成模型开发,主打 “大一统” 适配性 —— 支持多分辨率、多帧率、多风格(写实 / 动漫 / 二次元等)的图生视频生成,兼顾效果与易用性,适用于短视频创作、素材生成、创意可视化等场景。 核心特性: 支持单张参考图生成 5~30 秒短视频; 适配不同算力设备(低显存 / 高显存均可调整参数); 内置风格化、帧率补偿、画面稳定性优化逻辑; 兼容 Wan2.2 全系列模型(基础版 / 增强版)。 二、前置准备 1. 环境要求 组件 最低要求 推荐配置 ComfyUI v0.1.2+ v0.2.0+(兼容最新节点) Python 3.10.x 3.10.12(避免 3.11 + 的兼容性问题) GPU 显存 8GB(显存不足需开启低分辨率模式) 12GB+(支持 1080P 生成) 系统 Windows 10/11、Linux、macOS Windows 11(CUDA 加速)

2025-12-11

spark商业实战三部曲

基于*的Spark2.2.X版本,分为内核解密篇,商业案例篇,性能调优篇,共31章,学习过程中有任何疑问,可加入群,有专业人员答疑解惑。 目 录 上篇 内核解密 章 电光石火间体验Spark 2.2开发实战... 2 1.1 通过RDD实战电影点评系统入门及源码阅读... 2 1.1.1 Spark核心概念图解... 2 1.1.2 通过RDD实战电影点评系统案例... 4 1.2 通过DataFrame和DataSet实战电影点评系统... 7 1.2.1 通过DataFrame实战电影点评系统案例... 7 1.2.2 通过DataSet实战电影点评系统案例... 1.3 Spark 2.2源码阅读环境搭建及源码阅读体验... 11 第2章 Spark2.2技术及原理... 14 2.1 Spark 2.2综述... 14 2.1.1 连续应用程序... 14 2.1.2 新的API 15 2.2 Spark 2.2 Core. 16 2.2.1 第二代Tungsten引擎... 16 2.2.2 SparkSession. 16 2.2.3 累加器API 17 2.3 Spark 2.2 SQL. 19 2.3.1 Spark SQL. 20 2.3.2 DataFrame和DatasetAPI 20 2.3.3 Timed Window.. 21 2.4 Spark 2.2 Streaming. 21 2.4.1 StructuredStreaming. 21 2.4.2 增量输出模式... 23 2.5 Spark 2.2 MLlib. 27 2.5.1 基于DataFrame的MachineLearning API 28

2019-01-03

python-ldap-3.4.4-cp37-cp37m-win-amd64.whl

Python LDAP模块为开发者提供了与LDAP服务器交互的功能,如用户认证和数据检索。 python_ldap-3.4.4-cp311-cp311-win_amd64.whl.zip 是为Windows 64位系统设计的Python 3.11版本的预编译二进制包,通过pip工具方便安装。该文件包含 使用说明.txt 和 python_ldap-3.4.4-cp311-cp311-win_amd64.whl ,后者是实际的库文件。安装步骤简单明了,且 python_ldap 库提供了丰富的LDAP操作功能,支持安全性和灵活性需求,极大地提升了开发者与LDAP服务器交互的效率。

2026-01-20

python-ldap-3.4.4-cp311-cp311-win-amd64.whl

Python LDAP模块为开发者提供了与LDAP服务器交互的功能,如用户认证和数据检索。 python_ldap-3.4.4-cp311-cp311-win_amd64.whl.zip 是为Windows 64位系统设计的Python 3.11版本的预编译二进制包,通过pip工具方便安装。该文件包含 使用说明.txt 和 python_ldap-3.4.4-cp311-cp311-win_amd64.whl ,后者是实际的库文件。安装步骤简单明了,且 python_ldap 库提供了丰富的LDAP操作功能,支持安全性和灵活性需求,极大地提升了开发者与LDAP服务器交互的效率。

2026-01-20

python-ldap-3.4.4-cp38-cp38-win-amd64.whl

Python LDAP模块为开发者提供了与LDAP服务器交互的功能,如用户认证和数据检索。 python_ldap-3.4.4-cp311-cp311-win_amd64.whl.zip 是为Windows 64位系统设计的Python 3.11版本的预编译二进制包,通过pip工具方便安装。该文件包含 使用说明.txt 和 python_ldap-3.4.4-cp311-cp311-win_amd64.whl ,后者是实际的库文件。安装步骤简单明了,且 python_ldap 库提供了丰富的LDAP操作功能,支持安全性和灵活性需求,极大地提升了开发者与LDAP服务器交互的效率。

2026-01-20

python-ldap-3.4.4-cp39-cp39-win32.whl

Python LDAP模块为开发者提供了与LDAP服务器交互的功能,如用户认证和数据检索。 python_ldap-3.4.4-cp311-cp311-win_amd64.whl.zip 是为Windows 64位系统设计的Python 3.11版本的预编译二进制包,通过pip工具方便安装。该文件包含 使用说明.txt 和 python_ldap-3.4.4-cp311-cp311-win_amd64.whl ,后者是实际的库文件。安装步骤简单明了,且 python_ldap 库提供了丰富的LDAP操作功能,支持安全性和灵活性需求,极大地提升了开发者与LDAP服务器交互的效率。

2026-01-20

python-ldap-3.4.4-cp310-cp310-win-amd64.whl

Python LDAP模块为开发者提供了与LDAP服务器交互的功能,如用户认证和数据检索。 python_ldap-3.4.4-cp311-cp311-win_amd64.whl.zip 是为Windows 64位系统设计的Python 3.11版本的预编译二进制包,通过pip工具方便安装。该文件包含 使用说明.txt 和 python_ldap-3.4.4-cp311-cp311-win_amd64.whl ,后者是实际的库文件。安装步骤简单明了,且 python_ldap 库提供了丰富的LDAP操作功能,支持安全性和灵活性需求,极大地提升了开发者与LDAP服务器交互的效率。

2026-01-20

python-ldap-3.4.4-cp312-cp312-win-amd64.whl

Python LDAP模块为开发者提供了与LDAP服务器交互的功能,如用户认证和数据检索。 python_ldap-3.4.4-cp311-cp311-win_amd64.whl.zip 是为Windows 64位系统设计的Python 3.11版本的预编译二进制包,通过pip工具方便安装。该文件包含 使用说明.txt 和 python_ldap-3.4.4-cp311-cp311-win_amd64.whl ,后者是实际的库文件。安装步骤简单明了,且 python_ldap 库提供了丰富的LDAP操作功能,支持安全性和灵活性需求,极大地提升了开发者与LDAP服务器交互的效率。

2026-01-20

python3.8 对应的python-ldap包

在调试工程的时候发现需要django-auth-ldap,但还依赖python_ldap包,在windows上装这些包费老鼻子劲,csdn上找呢又不全,收分还多贵的,因此找到了之后将python3.7-11的包都给大家提供,不好意思挣点分,因为有些时候我也需要去下载东西,有需要的自取吧。 python_ldap-3.4.4-cp310-cp310-win_amd64.whl python_ldap-3.4.4-cp311-cp311-win_amd64.whl python_ldap-3.4.4-cp312-cp312-win_amd64.whl python_ldap-3.4.4-cp37-cp37m-win_amd64.whl python_ldap-3.4.4-cp38-cp38-win_amd64.whl python_ldap-3.4.4-cp39-cp39-win_amd64.whl

2026-01-20

python-ldap windows whl包

在调试工程的时候发现需要django-auth-ldap,但还依赖python_ldap包,在windows上装这些包费老鼻子劲,csdn上找呢又不全,收分还多贵的,因此找到了之后将python3.7-11的包都给大家提供,不好意思挣点分,因为有些时候我也需要去下载东西,有需要的自取吧。 python_ldap-3.4.4-cp310-cp310-win_amd64.whl python_ldap-3.4.4-cp311-cp311-win_amd64.whl python_ldap-3.4.4-cp312-cp312-win_amd64.whl python_ldap-3.4.4-cp37-cp37m-win_amd64.whl python_ldap-3.4.4-cp38-cp38-win_amd64.whl python_ldap-3.4.4-cp39-cp39-win_amd64.whl

2026-01-20

shapely windows whl包

shapely windows whl包,免去编译报错烦恼

2026-01-20

yolov11导出onnx格式模型

将yolov11训练的pt格式模型导出onnx格式模型

2026-01-16

yolov11 segment 分割数据标签转换文件

将json数据转换成yolov11可以使用的数据集格式

2026-01-16

华为昇腾Atlas310P本地部署大模型

在大模型应用落地的浪潮中,“本地部署、低延迟、数据可控”成为开发者和中小企业的核心诉求——动辄数万元的GPU卡抬高了入门门槛,云端调用又面临数据隐私泄露、网络延迟的风险。而华为昇腾Atlas310P作为国产化高能效NPU卡,凭借轻量化、高性价比的特性,成为本地部署大模型的“最优解”之一。 今天,我们就基于vLLM社区官方推荐的昇腾后端插件vLLM-Ascend,手把手教你在Atlas310P上从0到1部署并运行本地大模型,涵盖环境搭建、实操步骤、性能实测全流程,看完就能上手!

2026-01-15

Scenery LoRA:描绘壮丽自然与城市景观

Scenery LoRA 专为创造壮观的景观而生。这个模型能够精确捕捉自然元素的纹理和光影效果,如山川、河流、森林,同时也能创作出复杂的城市建筑和未来都市景观。它擅长创作大尺度的全景图和富有氛围感的环境设计,让您的作品充满震撼力和感染力。

2026-01-12

Anime LoRA:精致的日式动漫风格

Anime LoRA 专为捕捉日本动漫的精髓而设计。这个模型能够精确再现动漫角色的大眼睛、夸张的发型和鲜艳的色彩,擅长表现丰富的角色表情和动态姿势,同时能生成与动漫美学相符的背景场景,让您的作品充满生动的画面感。

2026-01-12

Disney LoRA:呈现迪士尼动画的魔法

Disney LoRA 模型完美再现了迪士尼动画的独特魅力。它不仅能够创造出圆润可爱的角色设计,还能呈现出迪士尼特有的温暖色调和柔和光影效果,非常适合创作充满童话色彩的场景和富有感染力的角色形象,带领观众进入一个充满魔法的世界。

2026-01-12

Realism LoRA:照片级真实感的极致

Realism LoRA 模型旨在提升 Flux 模型的照片级真实感效果。无论是细腻的皮肤纹理还是复杂的光影变化,这个模型都能逼真地再现现实世界的细节,让每一幅作品都如同真实照片般栩栩如生。(真实感跟MJV6 LoRA相比,个人觉得还是MJV6 LoRA强一点)

2026-01-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除