自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 机器学习第二课 -- Neural Network Basic

ogistic Regression(逻辑回归)和 Regression(回归)从根本上说,不是同一个东西。这个损失值非常大,因为模型赋予了正确类别(第1类)一个非常低的概率(0.01),所以它"错得很离谱"。最后其实我们就可以根据我们的需求调节函数,慢慢逼近我们所需要的函数。将线性回归的输出映射到(0,1)区间,从而得到样本属于某个类别的。通过拓展更多用“And”“or”“Not”的层来实现非线性分类。如果模型对正确类别的预测概率很低,就会受到巨大的。,并基于此概率进行分类决策。的统计学习方法,它通过。

2025-10-17 08:59:06 910

原创 机器学习第二课 ---- PR曲线和ROC曲线

通过选择合适的阈值,比如50%,对样本进行划分,概率大于50%的就认为是正例,小于50%的就是负例,从而计算相应的精准率和召回率。(3)当两个模型的ROC曲线发生交叉,难以判断哪一个模型更好,可以用AUC来做判断。的情况,且当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。3:实际问题中,正负样本数量往往很不均衡,P-R曲线的变化就会非常大,而。低阈值->低准确率-,低召回->返回更多的结果->大部分的结果是错误的。高阈值->高准确率,低召回->返回更少的结果->大部分的结果是正确的。

2025-10-14 16:12:44 622

原创 Pytorch搭建模型LSTM实战练习

上面没有介绍Pytorch如何安装,如果有问题,可以私戳问我。

2025-09-04 15:50:16 813

原创 LSTM 网络文献学习

能够学习。

2025-09-03 16:49:13 874

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除