题意
给出一个图,边值不等于0的表示通过这条路所需要的时间,有如下一些约束
- 在进入这条边前刚转弯
- 离开这条边后立即转弯
- 起点开始的边
- 终点的边
时间需要加倍,同时时间加倍不能叠加
问从起点到终点所需要的最短时间
思路
方法1:将一个点拆分成8个点,每个点有(r,c,dir,doubled)表示,表示上一步经过方向dir移动到(r,c)这个点,以及移动到这个点,边的值是否已经加倍。在构造图过程中,计算当前结点的后继结点时,首先看点对应方向是否可以走,在计算时间加倍时,如果到当前节点没有加倍,并且方向与下一步方向不一致,则上一步的边需要加倍,同时下一步的连也需要加倍
在根据遍历(r,c,dir,doubled)时,可以先遍历新的方向,看对应方向是否可行,来优化执行时间
方法2:添加一种静止点,即一个点扩展为5个点。由运动点转变为静止点以及继续运动,边的值不加倍。而静止点转变为继续运动和运动后再静止时边的值需要加倍
代码
方法1代码
#include <bits/stdc++.h>
using namespace std;
#define _for(i, a, b) for(int i = (a); i < (b); i++)
#define _rep(i, a, b) for (int i = (a); i <= (b); i++)
struct Edge
{
int from, to, dist;
};
struct HeapNode
{
int u, d;
bool operator<(const HeapNode& other) const
{
return d > other.d;
}
};
template <size_t SZV, int INF>
struct Dijkstra
{
int n;
bool done[SZV];
vector<Edge> edges;
vector<int> graph[SZV];
int d[SZV];
int p[SZV];
void init(int n)
{
this-> n = n;
_for(i, 0, n) {
graph[i].clear();
}
edges.clear();
}
void addEdge(int from, int to, int d)
{
graph[from].push_back(edges.size());
edges.push_back((Edge){from, to, d});
}
void dijkstra(int s)
{
priority_queue<HeapNode> pq;
fill_n(done, n, false);
fill_n(d, n, INF);
d[s] = 0;
pq.push({s, 0});
while (!pq.empty()) {
HeapNode curNode = pq.top();
pq.pop();
int u = curNode.u;
if (done[u]) {
continue;
}
done[u] = true;
_for(i, 0, graph[u].size()) {
Edge& edge = edges[graph[u][i]];
if (d[u] + edge.dist < d[edge.to]) {
d[edge.to] = d[u] + edge.dist;
p[edge.to] = graph[u][i];
pq.push((HeapNode){edge.to, d[edge.to]});
}
}
}
}
};
void fastio()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
const int maxr = 100;
const int maxc = 100;
const int UP = 0, LEFT = 1, DOWN = 2, RIGHT = 3;
const int inv[] = {2, 3, 0, 1};
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const int MAXN = maxr * maxc * 8 + 2;
const int INF = 1e6;
int R, C;
int r1, c1, r2, c2;
int grid[maxr][maxc][4];
Dijkstra<MAXN, INF> solver;
int id[maxr][maxc][4][2];
int n;
int ID(int r, int c, int dir, int doubled)
{
int& x= id[r][c][dir][doubled];
if (x == 0) {
x = ++n;
}
return x;
}
bool canGo(int r, int c, int dir)
{
if (r < 0 || r >= R || c < 0 || c >= C) {
return false;
}
return grid[r][c][dir] > 0;
}
int main()
{
fastio();
#ifndef ONLINE_JUDGE
ifstream fin("f:\\OJ\\uva_in.txt");
streambuf* back = cin.rdbuf(fin.rdbuf());
#endif
int kase = 1;
while (cin >> R >> C >> r1 >> c1 >> r2 >> c2) {
if (R == 0) {
break;
}
--r1; --c1; --r2; --c2;
_for(r, 0, R) {
_for(c, 0, C - 1) {
int num;
cin >> num;
grid[r][c][RIGHT] = grid[r][c + 1][LEFT] = num;
}
if (r != R - 1) {
_for(c, 0, C) {
int num;
cin >> num;
grid[r][c][DOWN] = grid[r + 1][c][UP] = num;
}
}
}
solver.init(R * C * 8 + 1);
n = 0;
memset(id, 0x00, sizeof(id));
_for(dir, 0, 4) {
if (canGo(r1, c1, dir)) {
solver.addEdge(0, ID(r1 + dr[dir], c1 + dc[dir], dir, 1), grid[r1][c1][dir] * 2);
}
}
_for(r, 0, R) {
_for(c, 0, C) {
_for(dir, 0, 4) {
if (!canGo(r, c, inv[dir])) {
continue;
}
_for(newdir, 0, 4) {
if (!canGo(r, c, newdir)) {
continue;
}
_for(doubled, 0, 2) {
int newr = r + dr[newdir];
int newc = c + dc[newdir];
int v = grid[r][c][newdir];
int newdoubled = 0;
if (dir != newdir) {
if (!doubled) {
v += grid[r][c][inv[dir]];
}
newdoubled = 1;
v += grid[r][c][newdir];
}
solver.addEdge(ID(r, c, dir, doubled), ID(newr, newc, newdir, newdoubled), v);
}
}
}
}
}
solver.dijkstra(0);
int ans = INF;
_for(dir, 0, 4) {
if (!canGo(r2, c2, inv[dir])) {
continue;
}
_for(doubled, 0, 2) {
int v = solver.d[ID(r2, c2, dir, doubled)];
//cout << "v:" << v << endl;
if (!doubled) {
v += grid[r2][c2][inv[dir]];
}
ans = min(ans, v);
}
}
cout << "Case " << kase++ << ": ";
if (ans == INF) {
cout << "Impossible" << endl;
} else {
cout << ans << endl;
}
}
#ifndef ONLINE_JUDGE
cin.rdbuf(back);
#endif
return 0;
}
方法2代码
#include <bits/stdc++.h>
using namespace std;
#define _for(i, a, b) for(int i = (a); i < (b); i++)
#define _rep(i, a, b) for (int i = (a); i <= (b); i++)
struct Edge
{
int from, to, dist;
};
struct HeapNode
{
int u, d;
bool operator<(const HeapNode& other) const
{
return d > other.d;
}
};
template <size_t SZV, int INF>
struct Dijkstra
{
int n;
bool done[SZV];
vector<Edge> edges;
vector<int> graph[SZV];
int d[SZV];
int p[SZV];
void init(int n)
{
this-> n = n;
_for(i, 0, n) {
graph[i].clear();
}
edges.clear();
}
void addEdge(int from, int to, int d)
{
graph[from].push_back(edges.size());
edges.push_back((Edge){from, to, d});
}
void dijkstra(int s)
{
priority_queue<HeapNode> pq;
fill_n(done, n, false);
fill_n(d, n, INF);
d[s] = 0;
pq.push({s, 0});
while (!pq.empty()) {
HeapNode curNode = pq.top();
pq.pop();
int u = curNode.u;
if (done[u]) {
continue;
}
done[u] = true;
_for(i, 0, graph[u].size()) {
Edge& edge = edges[graph[u][i]];
if (d[u] + edge.dist < d[edge.to]) {
d[edge.to] = d[u] + edge.dist;
p[edge.to] = graph[u][i];
pq.push((HeapNode){edge.to, d[edge.to]});
}
}
}
}
};
void fastio()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
const int maxr = 100;
const int maxc = 100;
const int UP = 0, LEFT = 1, DOWN = 2, RIGHT = 3;
const int inv[] = {2, 3, 0, 1};
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const int MAXN = maxr * maxc * 8 + 2;
const int INF = 1e6;
int R, C;
int r1, c1, r2, c2;
int grid[maxr][maxc][4];
Dijkstra<MAXN, INF> solver;
int id[maxr][maxc][5];
int n;
int ID(int r, int c, int dir)
{
int& x= id[r][c][dir];
if (x == 0) {
x = ++n;
}
return x;
}
bool canGo(int r, int c, int dir)
{
if (r < 0 || r >= R || c < 0 || c >= C) {
return false;
}
return grid[r][c][dir] > 0;
}
int main()
{
fastio();
#ifndef ONLINE_JUDGE
ifstream fin("f:\\OJ\\uva_in.txt");
streambuf* back = cin.rdbuf(fin.rdbuf());
#endif
int kase = 1;
while (cin >> R >> C >> r1 >> c1 >> r2 >> c2) {
if (R == 0) {
break;
}
--r1; --c1; --r2; --c2;
_for(r, 0, R) {
_for(c, 0, C - 1) {
int num;
cin >> num;
grid[r][c][RIGHT] = grid[r][c + 1][LEFT] = num;
}
if (r != R - 1) {
_for(c, 0, C) {
int num;
cin >> num;
grid[r][c][DOWN] = grid[r + 1][c][UP] = num;
}
}
}
solver.init(R * C * 5 + 1);
n = 0;
memset(id, 0x00, sizeof(id));
_for(dir, 0, 4) {
if (!canGo(r1, c1, dir)) {
continue;
}
solver.addEdge(0, ID(r1 + dr[dir], c1 + dc[dir], dir), grid[r1][c1][dir] * 2);
solver.addEdge(0, ID(r1 + dr[dir], c1 + dc[dir], 4), grid[r1][c1][dir] * 2);
}
_for(r, 0, R) {
_for(c, 0, C) {
_for(dir, 0, 4) {
if (!canGo(r, c, inv[dir])) {
continue;
}
solver.addEdge(ID(r, c, dir), ID(r, c, 4), grid[r][c][inv[dir]]);
if (!canGo(r, c, dir)) {
continue;
}
solver.addEdge(ID(r, c, dir), ID(r + dr[dir], c + dc[dir], dir), grid[r][c][dir]);
}
_for(dir, 0, 4) {
if (!canGo(r, c, dir)) {
continue;
}
solver.addEdge(ID(r, c, 4), ID(r + dr[dir], c + dc[dir], dir), grid[r][c][dir] * 2);
solver.addEdge(ID(r, c, 4), ID(r + dr[dir], c + dc[dir], 4), grid[r][c][dir] * 2);
}
}
}
solver.dijkstra(0);
int ans = solver.d[ID(r2, c2, 4)];
cout << "Case " << kase++ << ": ";
if (ans == INF) {
cout << "Impossible" << endl;
} else {
cout << ans << endl;
}
}
#ifndef ONLINE_JUDGE
cin.rdbuf(back);
#endif
return 0;
}