UVa11478 Halum(BellmanFord)

题意

给定一个n个点,m条边的有向图,每条边有一个权值。每次选择一个结点v和一个整数d,把以v为终点的边的权值减d,把以v为起点的边的权值加d,最后要求所有边的权值的最小值非负且最大。

思路

把经过多次操作后a到b的边的权值需要满足 w a b + s u m a − s u m b ≥ x w_{ab} + sum_a - sum_b \ge x wab+sumasumbx,则差分表示为 s u m b − s u m a ≤ w a b − x sum_b - sum_a \le w_{ab} - x sumbsumawabx

代码

#include <bits/stdc++.h>

using namespace std;

#define _for(i, a, b) for(int i = (a); i < (b); i++)
#define _rep(i, a, b) for (int i = (a); i <= (b); i++)

const int INF = 1e9, NN = 500 + 10;
struct Edge
{
    int from, to;
    double dist;
};

struct BellmanFord
{
    int n, m;
    vector<Edge> edges;
    vector<int> graph[NN];
    bool inq[NN];
    double d[NN];
    int p[NN];
    int cnt[NN];

    void init(int n)
    {
        this->n = n;
        _for(i, 0, n) {
            graph[i].clear();
        }
        edges.clear();
    }

    void  addEdge(int from, int to, double dist)
    {
        edges.push_back((Edge){from, to, dist});
        m = static_cast<int>(edges.size());
        graph[from].push_back(m - 1);
    }

    bool negativeCycle()
    {
        queue<int> q;
        _for(i, 0, n) {
            d[i] = 0;
            inq[i] = true;
            q.push(i);
            cnt[i] = 0;
        }

        while (!q.empty()) {
            int u = q.front(); q.pop();
            inq[u] = false;
            _for(i, 0, graph[u].size()) {
                Edge& e = edges[graph[u][i]];
                if (d[e.to] > d[u] + e.dist) {
                    d[e.to] = d[u] + e.dist;
                    p[e.to] = graph[u][i];

                    if (!inq[e.to]) {
                        q.push(e.to);
                        inq[e.to] = true;
                        if (++cnt[e.to] >= n) {
                            return true;
                        }
                    }
                }
            }
        }

        return false;
    }
};

void fastio()
{
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
}

static BellmanFord solver;

bool test(double x)
{
    _for(i, 0, solver.m) {
        solver.edges[i].dist -= x;
    }

    bool ret = solver.negativeCycle();
    _for(i, 0, solver.m) {
        solver.edges[i].dist += x;
    }

    return !ret;
}

int main()
{
    fastio();

    #ifndef ONLINE_JUDGE
        ifstream fin("f:\\OJ\\uva_in.txt");
        streambuf* back = cin.rdbuf(fin.rdbuf());
    #endif

    int n, m;
    while (cin >> n >> m) {
        solver.init(n);
        int ub = 0;
        _for(i, 0, m) {
            int u, v, d;
            cin >> u >> v >> d;
            ub = max(ub, d);
            solver.addEdge(u - 1, v - 1, d);
        }

        if (test(ub + 1)) {
            cout << "Infinite" << endl;
        } else if (!test(1)) {
            cout << "No Solution" << endl;
        } else {
            int L = 2, R = ub, ans = 1;
            while (L <= R) {
                int M = L + (R - L) / 2;
                if (test(M)) {
                    ans = M;
                    L = M + 1;
                } else {
                    R = M - 1;
                }
            }
            cout << ans << endl;
        }
    }

    #ifndef ONLINE_JUDGE
        cin.rdbuf(back);
    #endif

    return 0;
}

Bellman-Ford算法是一种用于求解单源最短路径问题的动态规划方法,尤其适用于存在负权边的情况。以下是C语言的一个简单实现: ```c #include <stdio.h> #include <limits.h> #define V 9 // 图的顶点数 // 定义邻接矩阵表示图 int graph[V][V]; void bellman_ford(int src, int dist[]) { int i, j, edge; // 初始化所有顶点到源的距离为无穷大,除了源节点本身为0 for (i = 0; i < V; i++) { if (i == src) dist[i] = 0; else dist[i] = INT_MAX; } // 进行V-1次松弛操作 for (i = 0; i < V - 1; i++) { for (j = 0; j < V; j++) { // 检查是否存在u-v边,并更新距离 for (edge = 0; edge < V; edge++) if (graph[j][edge] && dist[j] != INT_MAX && dist[j] + graph[j][edge] < dist[edge]) dist[edge] = dist[j] + graph[j][edge]; } } // 检查是否有负环,如果存在则会发现不止一次的缩短 for (i = 0; i < V; i++) { for (j = 0; j < V; j++) { if (graph[j][i] && dist[j] != INT_MAX && dist[j] + graph[j][i] < dist[i]) { printf("Graph contains negative weight cycle.\n"); return; } } } } int main() { int src, v, u, w; printf("Enter the number of vertices and edges\n"); scanf("%d", &V); // 输入邻接矩阵 printf("Enter the weighted adjacency matrix:\n"); for (v = 0; v < V; v++) { for (u = 0; u < V; u++) { scanf("%d", &w); graph[v][u] = w; // 如果w非零,则存在从v到u的有向边 } } printf("Source vertex: "); scanf("%d", &src); int dist[V]; // 存储每个顶点到源的最短距离 bellman_ford(src, dist); printf("Shortest path from %d to all other vertices:\n", src); for (v = 0; v < V; v++) { if (dist[v] != INT_MAX) printf("Distance to vertex %d is %d\n", v, dist[v]); else printf("Vertex %d is unreachable\n", v); } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kgduu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值