上次我们讲了如何用dijkstra算法求最短路,这一次我们就来讲一下Floyd算法。
既然有dijkstra,为什么还要学Floyd呢?因为他肯定有他自己的优点嘛!
算法讲解
Floyd的基本思路是:如果找到一个比已知最短距离更近的距离,那么就更新他。
单这样听似乎说明不了什么,那我们就直接上代码吧。
//核心代码
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) //枚举每条边
if(i!=j&&f[i][k]+f[k][j]<f[i][j]) //如果结点i到结点k的距离加上结点k到结点j的距离,也就是从i->k->j,小于结点i直接到结点j的距离,就更新这个最短距离。
f[i][j]=f[i][k]+f[k][j];
这时候,Floyd的优点就体现出来了——它的核心代码只有短短的5行,背记起来容易,在考场上如果数据范围不超过500,那Floyd算法就是个很好的选择。
dijkstra与Floyd的区别
dijkstra | Floyd |
时间复杂度 | 时间复杂度 |
需要用dist数组记录最短距离,只能算某一起点到其他点的最短距离。 | 可以直接在原二维数组上操作,可以算任何一点到其他点的距离。 |
代码比较长 | 代码简洁好记 |
例题
题目:最短路径
题目描述
给出一个有向图G=(V, E),和一个源点v0∈V,请写一个程序输出v0和图G中其它顶点的最短路径。只要所有的有向环都是正的,我们就允许图的边有负值。顶点的标号从1到n(n为图G的顶点数)。
输入输出格式
输入格式:
第1行:一个正数n(2<=n<=80),表示图G的顶点总数。
第2行:一个整数,表示源点v0(v0∈V,v0可以是图G中任意一个顶点)。
第3至第n+2行,用一个邻接矩阵W给出了这个图。
输出格式:
共包含n-1行,按照顶点编号从小到大的顺序,每行输出源点v0到一个顶点的最短距离。每行的具体格式参照样例。
输入输出样例
输入样例#1:
5
1
0 2 - - 10
- 0 3 - 7
- - 0 4 -
- - - 0 5
- - 6 - 0
输出样例#1:
(1 -> 2) = 2
(1 -> 3) = 5
(1 -> 4) = 9
(1 -> 5) = 9
这道题的数据范围只有80,用Floyd是再适合不过的了。
#include<bits/stdc++.h>
long long a[90][90],in[90][90],f[90][90],A,B,n;
int main(){
scanf("%lld%lld",&n,&A);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(scanf("%lld",&a[i][j]));
else a[i][j]=9999999999999;
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j) a[i][j]=std::min(a[i][k]+a[k][j],a[i][j]);
for(long long i=1;i<=n;i++){
if(i!=A) printf("(%lld -> %lld) = %lld\n",A,i,a[A][i]);
}
}