Eclipse中编写MapReduce并提交运行

本文介绍了如何在Eclipse中使用Maven构建MapReduce项目,详细阐述了Mapper和Reducer在同一文件及不同文件中的编写方法,并提供了遇到异常时的处理建议。通过WordCount示例,演示了从新建项目、添加Hadoop依赖、编写代码到打包运行的全过程。
摘要由CSDN通过智能技术生成

在实际的开发过程中,我们都是在IDE上编写好我们的业务应用程序之后,打包成jar包再提交至Hadoop集群上执行任务。本文我将介绍在eclipse中开发mapreduce应用的详细过程以及编写mapreduce应用的两种不同方式。为了便于各个jar包的管理和依赖解决,所以我选用的Maven构建工具来构建项目环境,如对maven不熟的朋友请自行google或百度解决。

下面均以最简单的WordCount应用来介绍编写过程。在编程过程中所有需要注意的选项均写在注释中,请仔细阅读。

第一种方式:Mapper,Reducer均在一个单独的文件中

第一步:在eclipse中新建Maven项目

第二步:增加hadoop的依赖jar包(请选择自己对应的hadoop版本)

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-common</artifactId>
  <version>2.6.4</version>
</dependency>
<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-hdfs</artifactId>
  <version>2.6.4</version>
</dependency>
<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>2.6.4</version>
</dependency>

第三步:创建java文件,编写代码

这里我将Mapper和Reducer实现类,以及job任务的配置实现均放置在一个java文件WordCount中,下面是WordCount类的代码:

package com.shell.count;

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutput
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值