HDU1465 错排经典题目

1 篇文章 0 订阅
1 篇文章 0 订阅

题问:给N个人信件全部转错信封的情况的总数;

这是经典的错排题目,百度一下就知道得出递推公司 f(n) = (n-1) *( f(n-1) + f(n-2));

这里详解一下这条公式是怎么推出来的!


首先,f(n)代表n封信件全部装错的情况数。

假设有100个信件需要投递,。那么我把信件分成两部分:99封  和  1封;

我把这99封信给其中一个人A,让他交给其余的人(其中包裹他自己的信)。有 (n - 1)种送法。


而剩下这“1封”信有两种情况:

1.刚好是 A 的信。那么剩下99封信就没有A的信,他可以随便装,有f(n - 1)中装错的方法。

2.不是A的信。那么他就必须把自己的那封信取出来,那么就剩下98封信他可以随便装,有f(n - 2)中装错的方法。


所以,  得出公式  f(n) = (n-1) *( f(n-1) + f(n-2));


代码:

#include<iostream>
using namespace std;
#define MAXN 22
_int64 list[MAXN];
void init() {
    list[2] = 1;
    list[3] = 2;
    for (int i=4; i<MAXN; i++) {
        list[i] = (i - 1) * (list[i - 1] + list[i - 2]);
    }
}
int main() {
    int n;
    init();
    while (cin>>n) {
        cout<<list[n]<<endl;
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值